Home
Class 12
MATHS
If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-...

If `f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)` is equal to `sin^(-1)(1/2)-sin^(-1)(x)` `sin^(-1)x-pi/6` `sin^(-1)x+pi/6` (d) none of these

A

`sin^(-1) ((1)/(2)) - sin^(-1) (x)`

B

`sin^(-1) x - (pi)/(6)`

C

`sin^(-1) x + (pi)/(6)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(x) \) given by the expression: \[ f(x) = \sin^{-1}\left(\frac{\sqrt{3}}{2}x - \frac{1}{2}\sqrt{1-x^2}\right) \] where \( -\frac{1}{2} < x < 1 \). ### Step 1: Substitute \( x \) with \( \sin \theta \) Let’s assume \( x = \sin \theta \). Then we can rewrite \( f(x) \) as: \[ f(\sin \theta) = \sin^{-1}\left(\frac{\sqrt{3}}{2}\sin \theta - \frac{1}{2}\sqrt{1 - \sin^2 \theta}\right) \] ### Step 2: Simplify the expression Using the identity \( \sqrt{1 - \sin^2 \theta} = \cos \theta \), we can substitute this into our expression: \[ f(\sin \theta) = \sin^{-1}\left(\frac{\sqrt{3}}{2}\sin \theta - \frac{1}{2}\cos \theta\right) \] ### Step 3: Recognize the sine subtraction formula The expression inside the sine inverse can be recognized as: \[ \frac{\sqrt{3}}{2}\sin \theta - \frac{1}{2}\cos \theta = \sin\left(\theta - \frac{\pi}{6}\right) \] This is due to the sine subtraction formula: \[ \sin(a - b) = \sin a \cos b - \cos a \sin b \] where \( a = \theta \) and \( b = \frac{\pi}{6} \). ### Step 4: Rewrite the function Thus, we can rewrite \( f(\sin \theta) \) as: \[ f(\sin \theta) = \sin^{-1}\left(\sin\left(\theta - \frac{\pi}{6}\right)\right) \] ### Step 5: Simplify using the properties of the sine inverse Since \( \sin^{-1}(\sin x) = x \) for \( x \) in the range \( -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \), we have: \[ f(\sin \theta) = \theta - \frac{\pi}{6} \] ### Step 6: Substitute back for \( \theta \) Recall that we set \( x = \sin \theta \), which implies \( \theta = \sin^{-1}(x) \). Therefore, we can substitute back: \[ f(x) = \sin^{-1}(x) - \frac{\pi}{6} \] ### Conclusion Thus, the final result is: \[ f(x) = \sin^{-1}(x) - \frac{\pi}{6} \] ### Answer The correct option is: \[ \text{(b) } \sin^{-1}x - \frac{\pi}{6} \]

To solve the problem, we need to find \( f(x) \) given by the expression: \[ f(x) = \sin^{-1}\left(\frac{\sqrt{3}}{2}x - \frac{1}{2}\sqrt{1-x^2}\right) \] where \( -\frac{1}{2} < x < 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))

(sin^(-1)x)/(sqrt(1-x^(2))

Solve : sin^(-1)x + sin^(-1) 2x = (pi)/(3)

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

Solve the following equations: sin^(-1)((3x)/5)+sin^(-1)((4x)/5)=sin^(-1)x sin^(-1)6x+sin^(-1)6sqrt(3)x=pi/2

If sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2) , then x is equal to

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

Solve sin^(-1)(14)/(|x|)+sin^(-1)(2sqrt(15))/(|x|)=pi/2

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |