Home
Class 12
MATHS
If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^...

If `2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0` for at least one real `x ,` then

A

`(1)/(8) le a le 2`

B

`a le 2`

C

`a in R - {2}`

D

`a in [0, (1)/(8)) uu (2, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 2^{\frac{2\pi}{\sin^{-1} x}} - 2(a + 2)^{\frac{\pi}{\sin^{-1} x}} + 8a < 0 \) for at least one real \( x \), we can follow these steps: ### Step 1: Substitute \( t = 2^{\frac{2\pi}{\sin^{-1} x}} \) Let \( t = 2^{\frac{2\pi}{\sin^{-1} x}} \). Since \( \sin^{-1} x \) ranges from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\), the value of \( t \) will range as follows: - When \( \sin^{-1} x \) approaches \( 0 \), \( t \) approaches \( 2^{\infty} \) (which is infinity). - When \( \sin^{-1} x \) approaches \( \frac{\pi}{2} \), \( t \) approaches \( 2^{\frac{2\pi}{\frac{\pi}{2}}} = 2^4 = 16 \). Thus, \( t \) can take values in the intervals \( (0, 16) \) and \( (16, \infty) \). ### Step 2: Rewrite the inequality in terms of \( t \) Substituting \( t \) into the inequality gives: \[ t - 2(a + 2)^{\frac{\pi}{\sin^{-1} x}} + 8a < 0 \] ### Step 3: Express \( (a + 2)^{\frac{\pi}{\sin^{-1} x}} \) in terms of \( t \) We can express \( (a + 2)^{\frac{\pi}{\sin^{-1} x}} \) as: \[ (a + 2)^{\frac{\pi}{\sin^{-1} x}} = (a + 2)^{\frac{\pi}{\frac{2\pi}{\log_2 t}}} = (a + 2)^{\frac{\log_2 t}{2}} \] This implies: \[ (a + 2)^{\frac{\pi}{sin^{-1} x}} = \sqrt{(a + 2)^{\log_2 t}} = (a + 2)^{\log_2 t} = t^{\log_2(a + 2)} \] ### Step 4: Substitute back into the inequality Now substituting back, we have: \[ t - 2t^{\log_2(a + 2)} + 8a < 0 \] ### Step 5: Analyze the quadratic inequality This can be rearranged into a standard quadratic form: \[ -2t^{\log_2(a + 2)} + t + 8a < 0 \] ### Step 6: Find the roots of the quadratic The roots of the quadratic \( -2t^{\log_2(a + 2)} + t + 8a = 0 \) can be found using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = -2, b = 1, c = 8a \). ### Step 7: Determine the conditions for the inequality to hold For the quadratic to be less than zero for at least one real \( x \), the discriminant must be non-negative: \[ 1^2 - 4(-2)(8a) \geq 0 \] This simplifies to: \[ 1 + 64a \geq 0 \implies a \geq -\frac{1}{64} \] ### Step 8: Check the intervals for \( a \) Since we also need to ensure that \( t \) can take values in the ranges derived earlier, we analyze the values of \( a \) further. ### Conclusion The final condition we derived is: \[ a \geq -\frac{1}{64} \] This means that for at least one real \( x \), the inequality holds true if \( a \) lies within the derived intervals.

To solve the inequality \( 2^{\frac{2\pi}{\sin^{-1} x}} - 2(a + 2)^{\frac{\pi}{\sin^{-1} x}} + 8a < 0 \) for at least one real \( x \), we can follow these steps: ### Step 1: Substitute \( t = 2^{\frac{2\pi}{\sin^{-1} x}} \) Let \( t = 2^{\frac{2\pi}{\sin^{-1} x}} \). Since \( \sin^{-1} x \) ranges from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\), the value of \( t \) will range as follows: - When \( \sin^{-1} x \) approaches \( 0 \), \( t \) approaches \( 2^{\infty} \) (which is infinity). - When \( \sin^{-1} x \) approaches \( \frac{\pi}{2} \), \( t \) approaches \( 2^{\frac{2\pi}{\frac{\pi}{2}}} = 2^4 = 16 \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept application exercise 7.6|9 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Solve sin^(-1)(1-x)-2sin^(-1)x=pi/2

Solve sin^(-1)(1-x)-2sin ^(-1)x=pi/2

lim_(xrarrpi//2)(cos((pi)/(2)sin^(2)x))/(cot((pi)/(2)sin^(2)x)) equals

If 2 sin^(2) ((pi//2) cos^(2) x)=1-cos (pi sin 2x), x ne (2n + 1) pi//2, n in I , then cos 2x is equal to

If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

If sin ^(-1) (1-x)-2 sin ^(-1) x = (pi)/(2) then x = ?

If sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2) , then x is equal to

If (sin^(-1) x)^2 + (cos^(-1)x)^2 =(5pi^2)/8 then one of the values of x is

Prove that: sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

Solve 2sin^(-1)x + sin^(-1) (1-x)= (pi)/(2)

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Single correct
  1. Arithmetic mean of the non-zero solutions of the equation tan^-1 (1/(2...

    Text Solution

    |

  2. If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y...

    Text Solution

    |

  3. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  4. The value of tan^(-1)((xcostheta)/(1-xsintheta))-cot^(-1)((costheta)/(...

    Text Solution

    |

  5. if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is eq...

    Text Solution

    |

  6. sum(r =1)^(n) sin^(-1) ((sqrtr - sqrt(r -1))/(sqrtr(r + 1))) is equal...

    Text Solution

    |

  7. sum(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

    Text Solution

    |

  8. The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) ...

    Text Solution

    |

  9. The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(5...

    Text Solution

    |

  10. If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x...

    Text Solution

    |

  11. The value 2tan^(-1)[sqrt((a-b)/(a+b)tantheta/2)] is equal to cos^(-1)(...

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. If 3\ sin^(-1)((2x)/(1+x^2))-4\ cos^(-1)((1-x^2)/(1+x^2))+2\ tan^(-1)(...

    Text Solution

    |

  14. If x(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x(2) = sin^(-1) ((1 - x^(2))/(1...

    Text Solution

    |

  15. If the equation x^3+b x^2+c x+1=0,(b<c), has only one real rootalpha ,...

    Text Solution

    |

  16. The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

    Text Solution

    |

  17. If cos^(- 1)x-cos^(- 1)(y/2)=alpha then 4x^2-4xycosalpha+y^2=

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  19. If f(x)=sin^(-1)((sqrt(3))/2x-1/2sqrt(1-x^2)),-1/2lt=xlt=1,t h e nf(x)...

    Text Solution

    |

  20. If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one...

    Text Solution

    |