Home
Class 12
MATHS
If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(...

If `(sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2,` then `D=|x^(N_1)y^(N_3)z^(N_3)w^(N_4)|(N_1,N_2,N_3,N_4 in N)` has a maximum value of 2 has a maximum value of 0 16 different D are possible has a minimum value of `-2`

A

has a maximum value of 2

B

has a minimum value of 0

C

16 different D are possible

D

has a minimum value of `-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equation: \[ (\sin^{-1} x + \sin^{-1} w)(\sin^{-1} y + \sin^{-1} z) = \pi^2 \] ### Step 1: Analyze the equation The maximum value of \(\sin^{-1} x\) and \(\sin^{-1} w\) occurs when \(x = 1\) and \(w = 1\). In that case, we have: \[ \sin^{-1} x + \sin^{-1} w = \sin^{-1}(1) + \sin^{-1}(1) = \frac{\pi}{2} + \frac{\pi}{2} = \pi \] Similarly, for \(\sin^{-1} y + \sin^{-1} z\): \[ \sin^{-1} y + \sin^{-1} z = \pi \] This means that both pairs must equal \(\pi\) for the product to equal \(\pi^2\). ### Step 2: Consider the possible values From the above, we can conclude that: 1. \(x = 1, w = 1\) or \(x = -1, w = -1\) 2. \(y = 1, z = 1\) or \(y = -1, z = -1\) Thus, \(x, w, y, z\) can take values of either \(1\) or \(-1\). ### Step 3: Calculate \(D\) Given \(D = |x^{N_1} y^{N_2} z^{N_3} w^{N_4}|\), we can evaluate the maximum value of \(D\). - If \(N_1, N_2, N_3, N_4\) are all \(1\), then: \[ D = |1^{N_1} \cdot 1^{N_2} \cdot 1^{N_3} \cdot 1^{N_4}| = |1| = 1 \] - If \(N_1, N_2, N_3, N_4\) are all \(-1\), then: \[ D = |-1^{N_1} \cdot -1^{N_2} \cdot -1^{N_3} \cdot -1^{N_4}| = |-1| = 1 \] ### Step 4: Count combinations Each of \(x, w, y, z\) can independently be either \(1\) or \(-1\). Therefore, there are \(2^4 = 16\) different combinations of values for \(D\). ### Conclusion Thus, the maximum value of \(D\) is \(1\) and there are \(16\) different possible values for \(D\). ### Final Answer The correct option is: **16 different \(D\) are possible.**

To solve the given problem, we start with the equation: \[ (\sin^{-1} x + \sin^{-1} w)(\sin^{-1} y + \sin^{-1} z) = \pi^2 \] ### Step 1: Analyze the equation The maximum value of \(\sin^{-1} x\) and \(\sin^{-1} w\) occurs when \(x = 1\) and \(w = 1\). In that case, we have: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Sigma_(n=1)^(5)sin ^(-1) ( sin ( 2n -1)) is

If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n_(1),n_(2),n_(3),n_(4) in N value of |(x^(n1),y^(n2)),(z^(n)3,w^(n4))| cannot be equal to

sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

If cos^(-1)((n)/(2pi)) gt(2pi)/(3) then maximum and minimum values of integer n are respectively

If equation sin^(-1) (4 sin^(2)theta + sin theta) + cos^(-1) (6 sin theta - 1) = (pi)/(2) has 10 solution for theta in [0, n pi] , then find the minimum value of n

Let f(x)=(x-1)^4(x-2)^n ,n in Ndot Then f(x) has (a) a maximum at x=1 if n is odd (b) a maximum at x=1 if n is even (c) a minimum at x=1 if n is even (d) a minima at x=2 if n is even

Prove that: sin^2(n+1)A-sin^2n A="sin"(2n+1)Asin A

(sum_(n=1)^10int_(-2n-1)^(-2n)sin^(27)(x)dx+sum_(n=1)^10int_(2n)^(2n+1)sin^(27)(x)dx)

If f(x)=(sin^2x-1)^("n"),"" then x=pi/2 is a point of local maximum, if n is odd local minimum, if n is odd local maximum, if n is even local minimum, if n is even

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)sin 14)=pi/2, t h e n the value of sin^(-1)sin2x is (a) 6-2pi (b) 2pi-6 (c) pi-3 (d) 3-pi

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Multiple correct answer type
  1. Which of the following quantities is/are positive ? a.cos (tan^(-1) (t...

    Text Solution

    |

  2. If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sq...

    Text Solution

    |

  3. If -1 lt x lt 0, then cos^(-1) x is equal to

    Text Solution

    |

  4. If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N1)y^(N...

    Text Solution

    |

  5. Indicate the relation which can hold in their respective domain for ...

    Text Solution

    |

  6. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  7. If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y), where xy< 0, then the ...

    Text Solution

    |

  8. The value of k(k >0) such that the length of the longest interval in w...

    Text Solution

    |

  9. Which of the following pairs of function/functions has same graph? y=...

    Text Solution

    |

  10. If sin −1 x+sin −1 y+sin −1 z=π, prove that x 1−x 2 ​ +y ...

    Text Solution

    |

  11. If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal t...

    Text Solution

    |

  12. If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2 then find a ...

    Text Solution

    |

  13. If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n th...

    Text Solution

    |

  14. If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

    Text Solution

    |

  15. If alpha=tan^(-1)((4x-4x^3)/(1-6x^2+x^2)),beta=2sin^(-1)((2x)/(1+x^2))...

    Text Solution

    |

  16. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r e x in R-{-1,1}, is equal t...

    Text Solution

    |

  17. Let alpha=som^(-1)((36)/(85)),beta=cos^(-1)(4/5)a n dgamma=tan^(-1)(8/...

    Text Solution

    |

  18. If Sn=cot^-1(3)+cot^-1(7)+cot^-1(13)+cot^-1(21)+....., n terms, then

    Text Solution

    |

  19. Equation 1+x^2+2x"sin"(cos^(-1)y)=0 is satisfied by exactly one value ...

    Text Solution

    |

  20. To the equation 2^2pi//cos^((-1)x)-(a+1/2)2^pi//cos^((-1)x)-a^2=0 has ...

    Text Solution

    |