Home
Class 12
MATHS
Indicate the relation which can hold in ...

Indicate the relation which can hold in their respective domain for infinite values of `xdot` `"tan"|tan^(-1)x|=|x|` (b) `"cot"|cot^(-1)x|=|x|` `tan^(-1)|tanx|=|x|` (d) `sin|sin^(-1)x|=|x|`

A

`tan|tan^(-1) x| = |x|`

B

`cot |cot^(-1) x| = |x|`

C

`tan^(-1) |tan x| = |x|`

D

`sin |sin^(-1) x| = |x|`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

Since `|tan^(-1)x| = {(tan^(-1) x," if " x ge 0),(-tan^(-1) x," if " x lt 0):}`
`rArr |tan^(-1)x| = tan^(-1) |x| AA x in R`
`rArr tan |tan^(-1) x| = tan tan^(-1) |x| = |x|`
Also, `|cot^(-1) x| = cot^(-1) x, AA x in R`
`rArr cot|cot^(-1) x| = x, AA x in R`
`tan^(-1)|tan x| = {(x,"if " 0 lt x lt (pi)/(2)),(-x," if " -(pi)/(2) lt x lt 0):}`
`sin|sin^(-1)x| = {(x,x in [0, 1]),(-x,x in [-1, 0]):}`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

Draw the graph of y=tan (tan^(-1)x) or y = cot (cot^(-1) x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

The values of x satisfying "tan"^(-1) (x+3) -"tan"^(-1) (x-3) = "sin"^(-1)((3)/(5)) are

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Evaluate: sin(cot^(-1)x) (ii) cos(tan^(-1)x)

Find the value of, cos [tan^(-1) {sin (cot^(-1)x)}]

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Multiple correct answer type
  1. Which of the following quantities is/are positive ? a.cos (tan^(-1) (t...

    Text Solution

    |

  2. If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sq...

    Text Solution

    |

  3. If -1 lt x lt 0, then cos^(-1) x is equal to

    Text Solution

    |

  4. If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N1)y^(N...

    Text Solution

    |

  5. Indicate the relation which can hold in their respective domain for ...

    Text Solution

    |

  6. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  7. If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y), where xy< 0, then the ...

    Text Solution

    |

  8. The value of k(k >0) such that the length of the longest interval in w...

    Text Solution

    |

  9. Which of the following pairs of function/functions has same graph? y=...

    Text Solution

    |

  10. If sin −1 x+sin −1 y+sin −1 z=π, prove that x 1−x 2 ​ +y ...

    Text Solution

    |

  11. If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal t...

    Text Solution

    |

  12. If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2 then find a ...

    Text Solution

    |

  13. If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n th...

    Text Solution

    |

  14. If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

    Text Solution

    |

  15. If alpha=tan^(-1)((4x-4x^3)/(1-6x^2+x^2)),beta=2sin^(-1)((2x)/(1+x^2))...

    Text Solution

    |

  16. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r e x in R-{-1,1}, is equal t...

    Text Solution

    |

  17. Let alpha=som^(-1)((36)/(85)),beta=cos^(-1)(4/5)a n dgamma=tan^(-1)(8/...

    Text Solution

    |

  18. If Sn=cot^-1(3)+cot^-1(7)+cot^-1(13)+cot^-1(21)+....., n terms, then

    Text Solution

    |

  19. Equation 1+x^2+2x"sin"(cos^(-1)y)=0 is satisfied by exactly one value ...

    Text Solution

    |

  20. To the equation 2^2pi//cos^((-1)x)-(a+1/2)2^pi//cos^((-1)x)-a^2=0 has ...

    Text Solution

    |