Home
Class 12
MATHS
If z = sec^(-1) (x + 1/x) + sec^(-1) (y ...

If z = `sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y)`, where xy< 0, then the possible value of z is (are)

A

`(8pi)/(10)`

B

`(7pi)/(10)`

C

`(9pi)/(10)`

D

`(21pi)/(20)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given for \( z \): \[ z = \sec^{-1} \left( x + \frac{1}{x} \right) + \sec^{-1} \left( y + \frac{1}{y} \right) \] where \( xy < 0 \). ### Step 1: Analyze the expressions \( x + \frac{1}{x} \) and \( y + \frac{1}{y} \) The expression \( x + \frac{1}{x} \) has certain properties based on the value of \( x \): - If \( x > 0 \), then \( x + \frac{1}{x} \geq 2 \). - If \( x < 0 \), then \( x + \frac{1}{x} \leq -2 \). Similarly, for \( y \): - If \( y > 0 \), then \( y + \frac{1}{y} \geq 2 \). - If \( y < 0 \), then \( y + \frac{1}{y} \leq -2 \). Given that \( xy < 0 \), one of \( x \) or \( y \) must be positive and the other must be negative. ### Step 2: Choose combinations based on the sign of \( x \) and \( y \) Since \( xy < 0 \), we can choose: - \( x + \frac{1}{x} \geq 2 \) (for \( x > 0 \)) - \( y + \frac{1}{y} \leq -2 \) (for \( y < 0 \)) ### Step 3: Determine the ranges for \( z \) Now we can find the ranges for the inverse secant functions: 1. For \( \sec^{-1} \left( x + \frac{1}{x} \right) \): - Since \( x + \frac{1}{x} \geq 2 \), the range of \( \sec^{-1} \) will be: \[ \sec^{-1} \left( x + \frac{1}{x} \right) \in \left[ \frac{\pi}{3}, \frac{\pi}{2} \right] \] 2. For \( \sec^{-1} \left( y + \frac{1}{y} \right) \): - Since \( y + \frac{1}{y} \leq -2 \), the range of \( \sec^{-1} \) will be: \[ \sec^{-1} \left( y + \frac{1}{y} \right) \in \left[ \frac{\pi}{2}, \frac{2\pi}{3} \right] \] ### Step 4: Combine the ranges to find \( z \) Now we can add the ranges of the two inverse secant functions to find the range for \( z \): - The minimum value of \( z \): \[ \frac{\pi}{3} + \frac{\pi}{2} = \frac{2\pi}{6} + \frac{3\pi}{6} = \frac{5\pi}{6} \] - The maximum value of \( z \): \[ \frac{\pi}{2} + \frac{2\pi}{3} = \frac{3\pi}{6} + \frac{4\pi}{6} = \frac{7\pi}{6} \] Thus, the range of \( z \) is: \[ z \in \left[ \frac{5\pi}{6}, \frac{7\pi}{6} \right] \] ### Step 5: Identify possible values of \( z \) Now we need to check which values fall within this range. The only value that lies in this interval is \( \frac{9\pi}{10} \). ### Final Answer The possible value of \( z \) is: \[ \frac{9\pi}{10} \]

To solve the problem, we need to analyze the expression given for \( z \): \[ z = \sec^{-1} \left( x + \frac{1}{x} \right) + \sec^{-1} \left( y + \frac{1}{y} \right) \] where \( xy < 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If z=sec^(-1)(x+1/x)+sec^(-1)(y+1/y), where x y<0, then the possible values of z is (are) (8pi)/(10) (b) (7pi)/(10) (c) (9pi)/(10) (d) (21pi)/(20)

If x gt y gt z gt 0 , then find the value of "cot"^(-1) (xy + 1)/(x - y) + cot^(-1).(yz + 1)/(y - z) + cot^(-1).(zx + 1)/(z - x)

Find the domain of (i) sec^(-1)(3x-1) (ii) sec^(-1)x-tan^(-1)x

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of cos^(-1) ("min" {x, y, z}) is

If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1-xy) is equal to

If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1-xy) is equal to

If ax + b sec(tan^-1 x) = c and ay + b sec(tan^-ly) = c, then (x+y)/(1-xy) is equal to

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1).(1)/(x) + cos^(-1).(1)/(y)

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x > 0. Find (dy)/(dx)dot

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Multiple correct answer type
  1. Which of the following quantities is/are positive ? a.cos (tan^(-1) (t...

    Text Solution

    |

  2. If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sq...

    Text Solution

    |

  3. If -1 lt x lt 0, then cos^(-1) x is equal to

    Text Solution

    |

  4. If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N1)y^(N...

    Text Solution

    |

  5. Indicate the relation which can hold in their respective domain for ...

    Text Solution

    |

  6. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  7. If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y), where xy< 0, then the ...

    Text Solution

    |

  8. The value of k(k >0) such that the length of the longest interval in w...

    Text Solution

    |

  9. Which of the following pairs of function/functions has same graph? y=...

    Text Solution

    |

  10. If sin −1 x+sin −1 y+sin −1 z=π, prove that x 1−x 2 ​ +y ...

    Text Solution

    |

  11. If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal t...

    Text Solution

    |

  12. If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2 then find a ...

    Text Solution

    |

  13. If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n th...

    Text Solution

    |

  14. If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

    Text Solution

    |

  15. If alpha=tan^(-1)((4x-4x^3)/(1-6x^2+x^2)),beta=2sin^(-1)((2x)/(1+x^2))...

    Text Solution

    |

  16. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r e x in R-{-1,1}, is equal t...

    Text Solution

    |

  17. Let alpha=som^(-1)((36)/(85)),beta=cos^(-1)(4/5)a n dgamma=tan^(-1)(8/...

    Text Solution

    |

  18. If Sn=cot^-1(3)+cot^-1(7)+cot^-1(13)+cot^-1(21)+....., n terms, then

    Text Solution

    |

  19. Equation 1+x^2+2x"sin"(cos^(-1)y)=0 is satisfied by exactly one value ...

    Text Solution

    |

  20. To the equation 2^2pi//cos^((-1)x)-(a+1/2)2^pi//cos^((-1)x)-a^2=0 has ...

    Text Solution

    |