Home
Class 12
MATHS
The value of k(k >0) such that the lengt...

The value of `k(k >0)` such that the length of the longest interval in which the function `f(x)=sin^(-1)|sink x|+cos^(-1)(cosk x)` is constant is `pi/4` is/ are 8 (b) 4 (c) 12 (d) 16

A

8

B

4

C

12

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that the function \[ f(x) = \sin^{-1} |\sin(kx)| + \cos^{-1} (\cos(kx)) \] is constant over the interval of length \( \frac{\pi}{4} \). ### Step 1: Analyze the Components of the Function The function consists of two parts: 1. \( \sin^{-1} |\sin(kx)| \) 2. \( \cos^{-1} (\cos(kx)) \) ### Step 2: Determine the Range of Each Component 1. **For \( \sin^{-1} |\sin(kx)| \)**: - The function \( |\sin(kx)| \) oscillates between 0 and 1. - Therefore, \( \sin^{-1} |\sin(kx)| \) will vary between 0 and \( \frac{\pi}{2} \). 2. **For \( \cos^{-1} (\cos(kx)) \)**: - The function \( \cos(kx) \) oscillates between -1 and 1. - Thus, \( \cos^{-1} (\cos(kx)) \) will vary between 0 and \( \pi \). ### Step 3: Combine the Two Components The function \( f(x) \) can be expressed as: \[ f(x) = \sin^{-1} |\sin(kx)| + \cos^{-1} (\cos(kx)) \] ### Step 4: Set the Function to be Constant For \( f(x) \) to be constant, the sum of the two components must equal a constant value. We want this constant value to equal \( \frac{\pi}{4} \). ### Step 5: Identify the Conditions for Constancy The function \( f(x) \) will be constant if both components do not change over the interval of \( x \). This occurs when: - \( kx \) is restricted to a specific range where both \( |\sin(kx)| \) and \( \cos(kx) \) do not change. ### Step 6: Determine the Length of the Interval We need to find the interval length \( \frac{\pi}{4} \). - The periodicity of \( \sin(kx) \) is \( \frac{2\pi}{k} \). - The periodicity of \( \cos(kx) \) is also \( \frac{2\pi}{k} \). Thus, for \( f(x) \) to be constant over an interval of length \( \frac{\pi}{4} \), we can set: \[ \frac{2\pi}{k} = \frac{\pi}{4} \] ### Step 7: Solve for \( k \) To find \( k \): \[ 2\pi = \frac{\pi}{4} k \] Multiplying both sides by 4: \[ 8\pi = \pi k \] Dividing both sides by \( \pi \): \[ k = 8 \] ### Conclusion The value of \( k \) such that the length of the longest interval in which the function \( f(x) \) is constant is \( \frac{\pi}{4} \) is: \[ \boxed{8} \]

To solve the problem, we need to find the value of \( k \) such that the function \[ f(x) = \sin^{-1} |\sin(kx)| + \cos^{-1} (\cos(kx)) \] is constant over the interval of length \( \frac{\pi}{4} \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The value of k(k >0) such that the length of the longest interval in which the function f(x)=sin^(-1)|sink x|+cos^(-1)(cosk x) is constant is pi/4 is/ are (a)8 (b) 4 (c) 12 (d) 16

The length of the longest interval, in which the function 3sin x-4 sin^3x is increasing is

The length of the longest interval in which the function y=sin2x-2sinx increases for x in [0, pi] is

The length of the longest interval in which the function f(x)=x^(3)-3a^(2)x+4 is decreasing is (AA a gt 0)

The length of the longest interval in which the function 3sinx-4sin^3x is increasing is pi/3 (b) pi/2 (c) (3pi)/2 (d) pi

The length of the largest continuous interval in which the function f(x)=4x-tan2x is monotonic is (a) pi/2 (b) pi/4 (c) pi/8 (d) pi/(16)

The value of k for which the function f(x)={(sin(5x)/(3x)+cosx, xne0),(k, x=0):} is continuous at x=0 is

Separate the interval [0,pi/2] into sub intervals in which function f(x)=sin^4(x)+cos^4(x) is strictly increasing or decreasing.

If the function f(x)={(cosx)^(1/x),x!=0k ,x=0 is continuous at x=0 , then the value of k is 0 (b) 1 (c) -1 (d) e

On the interval [-(pi)/(4) , (pi)/(4)] , the function f (x) = sqrt(1 + sin^(2) x) has a maximum value of

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Multiple correct answer type
  1. Which of the following quantities is/are positive ? a.cos (tan^(-1) (t...

    Text Solution

    |

  2. If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sq...

    Text Solution

    |

  3. If -1 lt x lt 0, then cos^(-1) x is equal to

    Text Solution

    |

  4. If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N1)y^(N...

    Text Solution

    |

  5. Indicate the relation which can hold in their respective domain for ...

    Text Solution

    |

  6. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  7. If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y), where xy< 0, then the ...

    Text Solution

    |

  8. The value of k(k >0) such that the length of the longest interval in w...

    Text Solution

    |

  9. Which of the following pairs of function/functions has same graph? y=...

    Text Solution

    |

  10. If sin −1 x+sin −1 y+sin −1 z=π, prove that x 1−x 2 ​ +y ...

    Text Solution

    |

  11. If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal t...

    Text Solution

    |

  12. If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2 then find a ...

    Text Solution

    |

  13. If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n th...

    Text Solution

    |

  14. If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

    Text Solution

    |

  15. If alpha=tan^(-1)((4x-4x^3)/(1-6x^2+x^2)),beta=2sin^(-1)((2x)/(1+x^2))...

    Text Solution

    |

  16. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r e x in R-{-1,1}, is equal t...

    Text Solution

    |

  17. Let alpha=som^(-1)((36)/(85)),beta=cos^(-1)(4/5)a n dgamma=tan^(-1)(8/...

    Text Solution

    |

  18. If Sn=cot^-1(3)+cot^-1(7)+cot^-1(13)+cot^-1(21)+....., n terms, then

    Text Solution

    |

  19. Equation 1+x^2+2x"sin"(cos^(-1)y)=0 is satisfied by exactly one value ...

    Text Solution

    |

  20. To the equation 2^2pi//cos^((-1)x)-(a+1/2)2^pi//cos^((-1)x)-a^2=0 has ...

    Text Solution

    |