Home
Class 12
MATHS
If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(...

If `sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2` then find `a` and `b`

A

`b = (2a -3)/(3a)`

B

`b = (3a -2)/(2a)`

C

`a = (3)/(2 - 3b)`

D

`a = (2)/(3 - 2b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(a - \frac{a^2}{3} + \frac{a^3}{9} - \ldots\right) + \cos^{-1}(1 + b + b^2 + \ldots) = \frac{\pi}{2}, \] we will break it down into two parts: the series for \(\sin^{-1}\) and the series for \(\cos^{-1}\). ### Step 1: Analyze the series for \(\sin^{-1}\) The series for \(\sin^{-1}\) can be recognized as an infinite geometric series: \[ S = a - \frac{a^2}{3} + \frac{a^3}{9} - \ldots \] This series has a first term \(a\) and a common ratio \(r = -\frac{a}{3}\). The sum of an infinite geometric series can be calculated using the formula: \[ S = \frac{a}{1 - r} \] Substituting the values, we have: \[ S = \frac{a}{1 - \left(-\frac{a}{3}\right)} = \frac{a}{1 + \frac{a}{3}} = \frac{3a}{3 + a} \] ### Step 2: Analyze the series for \(\cos^{-1}\) The series for \(\cos^{-1}\) is: \[ T = 1 + b + b^2 + \ldots \] This is also an infinite geometric series with first term \(1\) and common ratio \(b\). The sum is given by: \[ T = \frac{1}{1 - b} \] ### Step 3: Substitute the sums into the equation Now we substitute the sums back into the original equation: \[ \sin^{-1}\left(\frac{3a}{3 + a}\right) + \cos^{-1}\left(\frac{1}{1 - b}\right) = \frac{\pi}{2} \] Using the identity \(\sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2}\), we can conclude that: \[ \frac{3a}{3 + a} = \frac{1}{1 - b} \] ### Step 4: Set up the equation From the above, we can equate: \[ 3a(1 - b) = 3 + a \] Expanding this gives: \[ 3a - 3ab = 3 + a \] Rearranging leads to: \[ 2a - 3ab = 3 \] ### Step 5: Solve for \(b\) Rearranging for \(b\): \[ b = \frac{2a - 3}{3a} \] ### Step 6: Find values for \(a\) and \(b\) To find specific values for \(a\) and \(b\), we can use a trial method. Let's try \(b = \frac{1}{2}\): Substituting \(b = \frac{1}{2}\) into the equation for \(b\): \[ \frac{1}{2} = \frac{2a - 3}{3a} \] Cross-multiplying gives: \[ 3a \cdot \frac{1}{2} = 2a - 3 \] This simplifies to: \[ \frac{3a}{2} = 2a - 3 \] Multiplying through by \(2\) to eliminate the fraction: \[ 3a = 4a - 6 \] Rearranging gives: \[ a = 6 \] ### Step 7: Find \(b\) using \(a\) Now substituting \(a = 6\) back into the equation for \(b\): \[ b = \frac{2(6) - 3}{3(6)} = \frac{12 - 3}{18} = \frac{9}{18} = \frac{1}{2} \] ### Final Result Thus, the values of \(a\) and \(b\) are: \[ \boxed{a = 6, b = \frac{1}{2}} \]

To solve the equation \[ \sin^{-1}\left(a - \frac{a^2}{3} + \frac{a^3}{9} - \ldots\right) + \cos^{-1}(1 + b + b^2 + \ldots) = \frac{\pi}{2}, \] we will break it down into two parts: the series for \(\sin^{-1}\) and the series for \(\cos^{-1}\). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)sin 14)=pi/2, t h e n the value of sin^(-1)sin2x is (a) 6-2pi (b) 2pi-6 (c) pi-3 (d) 3-pi

Number of ordered pairs (a,b) for which sin^(-1)(1+b+b^2+..oo)+cos^(-1)(a-a^2/3+a^4/9+..oo)=pi/2 is (A) 0 (B) 4 (C) 9 (D) Infinite

Let f(x)={(1-sin^3x)/(3cos^2x) if x pi/2 find a and b. .

If sin (A+B) =1 and cos (A-B) = (sqrt(3))/(2) , then find the values of A and B.

If sin(A-B) = 1/2 and cos(A+B) = 1/2 , 0^o B, then find A and B.

The value of sin^(-1)(-sqrt3/2)+cos^(-1)(cos\ (7pi)/6) is a. (5pi)/6 b. pi/2 c. (3pi)/2 d. none of these

If sin(A+B)=1 and cos(A-B)=(sqrt(3))/2 , then find A and B dot

Value of cos^(-1) (-(1)/(2)) + sin ^(-1)""(1)/(2) is: a) 2 pi b) (pi)/(2) c) pi d) none of these

If sinA=3/5 and cosB=9/41, 0 < A < pi/2 and 0 < B < pi/2 then find the values of (i) sin(A+B) (ii) sin(A-B) (iii) cos(A+B) (iv) cos(A-B)

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Multiple correct answer type
  1. Which of the following quantities is/are positive ? a.cos (tan^(-1) (t...

    Text Solution

    |

  2. If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sq...

    Text Solution

    |

  3. If -1 lt x lt 0, then cos^(-1) x is equal to

    Text Solution

    |

  4. If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N1)y^(N...

    Text Solution

    |

  5. Indicate the relation which can hold in their respective domain for ...

    Text Solution

    |

  6. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  7. If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y), where xy< 0, then the ...

    Text Solution

    |

  8. The value of k(k >0) such that the length of the longest interval in w...

    Text Solution

    |

  9. Which of the following pairs of function/functions has same graph? y=...

    Text Solution

    |

  10. If sin −1 x+sin −1 y+sin −1 z=π, prove that x 1−x 2 ​ +y ...

    Text Solution

    |

  11. If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal t...

    Text Solution

    |

  12. If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2 then find a ...

    Text Solution

    |

  13. If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n th...

    Text Solution

    |

  14. If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

    Text Solution

    |

  15. If alpha=tan^(-1)((4x-4x^3)/(1-6x^2+x^2)),beta=2sin^(-1)((2x)/(1+x^2))...

    Text Solution

    |

  16. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r e x in R-{-1,1}, is equal t...

    Text Solution

    |

  17. Let alpha=som^(-1)((36)/(85)),beta=cos^(-1)(4/5)a n dgamma=tan^(-1)(8/...

    Text Solution

    |

  18. If Sn=cot^-1(3)+cot^-1(7)+cot^-1(13)+cot^-1(21)+....., n terms, then

    Text Solution

    |

  19. Equation 1+x^2+2x"sin"(cos^(-1)y)=0 is satisfied by exactly one value ...

    Text Solution

    |

  20. To the equation 2^2pi//cos^((-1)x)-(a+1/2)2^pi//cos^((-1)x)-a^2=0 has ...

    Text Solution

    |