Home
Class 12
MATHS
If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is...

If `2tan^(-1)x+sin^(-1)((2x)/(1+x^2) )` is independent of x then :

A

`x gt 1`

B

`x lt -1`

C

`0 lt x lt 1`

D

`-1 lt x lt 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression \(2\tan^{-1}(x) + \sin^{-1}\left(\frac{2x}{1+x^2}\right)\) and determine the conditions under which it is independent of \(x\). ### Step 1: Understanding the Inverse Trigonometric Functions We know that: \[ \tan^{-1}(x) = \theta \implies \tan(\theta) = x \] From the double angle formula for tangent, we have: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1-\tan^2(\theta)} = \frac{2x}{1-x^2} \] Thus, \[ 2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \] ### Step 2: Relating \(2\tan^{-1}(x)\) and \(\sin^{-1}\left(\frac{2x}{1+x^2}\right)\) We also know that: \[ \sin^{-1}(y) = \theta \implies \sin(\theta) = y \] In our case, we have: \[ \sin^{-1}\left(\frac{2x}{1+x^2}\right) \] The expression \(\frac{2x}{1+x^2}\) can be derived from the tangent double angle formula. ### Step 3: Setting Up the Equation We want to find conditions under which: \[ 2\tan^{-1}(x) + \sin^{-1}\left(\frac{2x}{1+x^2}\right) = C \] where \(C\) is a constant (independent of \(x\)). ### Step 4: Analyzing the Conditions We know the following: - If \(|x| \leq 1\), then: \[ 2\tan^{-1}(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) \] - If \(x > 1\): \[ 2\tan^{-1}(x) = \pi - \sin^{-1}\left(\frac{2x}{1+x^2}\right) \] - If \(x < -1\): \[ 2\tan^{-1}(x) = -\pi - \sin^{-1}\left(\frac{2x}{1+x^2}\right) \] ### Step 5: Conclusion For the expression \(2\tan^{-1}(x) + \sin^{-1}\left(\frac{2x}{1+x^2}\right)\) to be independent of \(x\), we need to consider the cases: - For \(|x| \leq 1\), the expression simplifies to a constant. - For \(x > 1\) and \(x < -1\), the expression also simplifies to constants based on the values of \(x\). Thus, the conditions for independence of \(x\) are satisfied for the ranges of \(x\) mentioned. ### Final Answer The values of \(x\) for which \(2\tan^{-1}(x) + \sin^{-1}\left(\frac{2x}{1+x^2}\right)\) is independent of \(x\) are: - \(x \leq 1\) - \(x \geq -1\)

To solve the problem, we need to analyze the expression \(2\tan^{-1}(x) + \sin^{-1}\left(\frac{2x}{1+x^2}\right)\) and determine the conditions under which it is independent of \(x\). ### Step 1: Understanding the Inverse Trigonometric Functions We know that: \[ \tan^{-1}(x) = \theta \implies \tan(\theta) = x \] From the double angle formula for tangent, we have: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The complete set of values of x for which 2 tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) is independent of x is :

Show that : 2tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is constant for xgeq1, find that constant.

If |x| le 1 , then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

Show that : 2tan^(-1)x+sin^(-1)(2x)/(1+x^2) is constant for xgeq1, find that constant.

If sin^(-1)((4x)/(x^2+4))+2tan^(-1)(-x/2) is independent of x , find the values of xdot

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4tan^(-1)x (b) 0 (c) pi/2 (d) pi

If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) , then "………"lt y lt "………" .

sin (tan ^(-1)2x)

Given that , tan^(-1) ((2x)/(1-x^(2))) = {{:(2 tan^(-1) x"," |x| le 1),(-pi +2 tan^(-1)x","x gt 1),(pi+2 tan^(-1)x"," x lt -1):} sin^(-1)((2x)/(1+x^(2))) ={{:(2 tan^(-1)x","|x|le1),(pi -2 tan^(-1)x","x gt 1 and ),(-(pi+2tan^(-1))","x lt -1):} sin^(-1) x + cos^(-1) x = pi//2 " for " - 1 le x le 1 sin^(-1) ((4x)/(x^(2)+4)) + 2 tan^(-1)( - x/2) is independent of x , then

Differentiate sin^(-1)((2x)/(1+x^2)) with respect to tan^(-1)x .

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Multiple correct answer type
  1. Which of the following quantities is/are positive ? a.cos (tan^(-1) (t...

    Text Solution

    |

  2. If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sq...

    Text Solution

    |

  3. If -1 lt x lt 0, then cos^(-1) x is equal to

    Text Solution

    |

  4. If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N1)y^(N...

    Text Solution

    |

  5. Indicate the relation which can hold in their respective domain for ...

    Text Solution

    |

  6. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  7. If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y), where xy< 0, then the ...

    Text Solution

    |

  8. The value of k(k >0) such that the length of the longest interval in w...

    Text Solution

    |

  9. Which of the following pairs of function/functions has same graph? y=...

    Text Solution

    |

  10. If sin −1 x+sin −1 y+sin −1 z=π, prove that x 1−x 2 ​ +y ...

    Text Solution

    |

  11. If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal t...

    Text Solution

    |

  12. If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2 then find a ...

    Text Solution

    |

  13. If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n th...

    Text Solution

    |

  14. If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

    Text Solution

    |

  15. If alpha=tan^(-1)((4x-4x^3)/(1-6x^2+x^2)),beta=2sin^(-1)((2x)/(1+x^2))...

    Text Solution

    |

  16. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r e x in R-{-1,1}, is equal t...

    Text Solution

    |

  17. Let alpha=som^(-1)((36)/(85)),beta=cos^(-1)(4/5)a n dgamma=tan^(-1)(8/...

    Text Solution

    |

  18. If Sn=cot^-1(3)+cot^-1(7)+cot^-1(13)+cot^-1(21)+....., n terms, then

    Text Solution

    |

  19. Equation 1+x^2+2x"sin"(cos^(-1)y)=0 is satisfied by exactly one value ...

    Text Solution

    |

  20. To the equation 2^2pi//cos^((-1)x)-(a+1/2)2^pi//cos^((-1)x)-a^2=0 has ...

    Text Solution

    |