Home
Class 12
MATHS
2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e ...

`2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r e x in R-{-1,1},` is equal to `(2x)/(1-x^2)` `t(2tan^(-1)x)` `tan(cot^(-1)(-x)-cot^(-1)(x))` `"tan"(2cot^(-1)x)`

A

`(2x)/(1 -x^(2))`

B

`tan(2 tan^(-1) x)`

C

`tan (cot^(-1) (-x) - cot^(-1) x))`

D

`tan (2 cot^(-1) x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 2 \tan(\tan^{-1}(x) + \tan^{-1}(x^3)) \), where \( x \in \mathbb{R} \setminus \{-1, 1\} \), we can follow these steps: ### Step 1: Define Variables Let \( \alpha = \tan^{-1}(x) \) and \( \beta = \tan^{-1}(x^3) \). Then, we have: - \( \tan(\alpha) = x \) - \( \tan(\beta) = x^3 \) **Hint:** Start by expressing the inverse tangent functions in terms of variables to simplify the expression. ### Step 2: Use the Sum Formula for Tangent We need to find \( \tan(\alpha + \beta) \). The formula for the tangent of a sum is: \[ \tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha) \tan(\beta)} \] Substituting the values of \( \tan(\alpha) \) and \( \tan(\beta) \): \[ \tan(\alpha + \beta) = \frac{x + x^3}{1 - x \cdot x^3} \] **Hint:** Remember to apply the tangent addition formula correctly. ### Step 3: Simplify the Expression Now simplify the expression: \[ \tan(\alpha + \beta) = \frac{x + x^3}{1 - x^4} \] Thus, we have: \[ 2 \tan(\alpha + \beta) = 2 \cdot \frac{x + x^3}{1 - x^4} \] This simplifies to: \[ \frac{2(x + x^3)}{1 - x^4} \] **Hint:** Factor out common terms in the numerator to simplify further. ### Step 4: Factor the Numerator Notice that: \[ x + x^3 = x(1 + x^2) \] So we can rewrite: \[ 2 \tan(\alpha + \beta) = \frac{2x(1 + x^2)}{1 - x^4} \] **Hint:** Look for ways to factor the denominator as well. ### Step 5: Factor the Denominator The denominator can be factored as: \[ 1 - x^4 = (1 - x^2)(1 + x^2) \] Thus, we have: \[ 2 \tan(\alpha + \beta) = \frac{2x(1 + x^2)}{(1 - x^2)(1 + x^2)} \] **Hint:** Cancel out the common terms in the numerator and denominator. ### Step 6: Cancel Common Terms The \( (1 + x^2) \) terms cancel out: \[ 2 \tan(\alpha + \beta) = \frac{2x}{1 - x^2} \] ### Conclusion Thus, we find that: \[ 2 \tan(\tan^{-1}(x) + \tan^{-1}(x^3)) = \frac{2x}{1 - x^2} \] The answer is: \[ \boxed{\frac{2x}{1 - x^2}} \]

To solve the problem \( 2 \tan(\tan^{-1}(x) + \tan^{-1}(x^3)) \), where \( x \in \mathbb{R} \setminus \{-1, 1\} \), we can follow these steps: ### Step 1: Define Variables Let \( \alpha = \tan^{-1}(x) \) and \( \beta = \tan^{-1}(x^3) \). Then, we have: - \( \tan(\alpha) = x \) - \( \tan(\beta) = x^3 \) **Hint:** Start by expressing the inverse tangent functions in terms of variables to simplify the expression. ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to (2x)/(1-x^2) t(2tan^(-1)x) tan(cot^(-1)(-x)-cot^(-1)(x)) "tan"(2cot^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x =

Solve : tan^(-1)( 1/2) = cot^(-1) x + tan^(-1)( 1/7)

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Multiple correct answer type
  1. Which of the following quantities is/are positive ? a.cos (tan^(-1) (t...

    Text Solution

    |

  2. If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sq...

    Text Solution

    |

  3. If -1 lt x lt 0, then cos^(-1) x is equal to

    Text Solution

    |

  4. If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N1)y^(N...

    Text Solution

    |

  5. Indicate the relation which can hold in their respective domain for ...

    Text Solution

    |

  6. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  7. If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y), where xy< 0, then the ...

    Text Solution

    |

  8. The value of k(k >0) such that the length of the longest interval in w...

    Text Solution

    |

  9. Which of the following pairs of function/functions has same graph? y=...

    Text Solution

    |

  10. If sin −1 x+sin −1 y+sin −1 z=π, prove that x 1−x 2 ​ +y ...

    Text Solution

    |

  11. If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal t...

    Text Solution

    |

  12. If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2 then find a ...

    Text Solution

    |

  13. If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n th...

    Text Solution

    |

  14. If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

    Text Solution

    |

  15. If alpha=tan^(-1)((4x-4x^3)/(1-6x^2+x^2)),beta=2sin^(-1)((2x)/(1+x^2))...

    Text Solution

    |

  16. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r e x in R-{-1,1}, is equal t...

    Text Solution

    |

  17. Let alpha=som^(-1)((36)/(85)),beta=cos^(-1)(4/5)a n dgamma=tan^(-1)(8/...

    Text Solution

    |

  18. If Sn=cot^-1(3)+cot^-1(7)+cot^-1(13)+cot^-1(21)+....., n terms, then

    Text Solution

    |

  19. Equation 1+x^2+2x"sin"(cos^(-1)y)=0 is satisfied by exactly one value ...

    Text Solution

    |

  20. To the equation 2^2pi//cos^((-1)x)-(a+1/2)2^pi//cos^((-1)x)-a^2=0 has ...

    Text Solution

    |