Home
Class 12
MATHS
If Sn=cot^-1(3)+cot^-1(7)+cot^-1(13)+cot...

If `S_n=cot^-1(3)+cot^-1(7)+cot^-1(13)+cot^-1(21)+.....`, `n` terms, then

A

`S_(10) = tan^(-1).(5)/(6)`

B

`S_(oo) = (pi)/(4)`

C

`S_(6) = sin^(-1).(4)/(5)`

D

`S_(20) = cot^(-1) 1.1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the series \( S_n = \cot^{-1}(3) + \cot^{-1}(7) + \cot^{-1}(13) + \cot^{-1}(21) + \ldots \) up to \( n \) terms. ### Step-by-Step Solution: 1. **Identify the general term**: The terms in the series can be expressed as: \[ t_r = \cot^{-1}(1 + r^2 + r) \] for \( r = 1, 2, 3, \ldots, n \). 2. **Convert cotangent to tangent**: Using the identity \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \), we rewrite the general term: \[ t_r = \tan^{-1}\left(\frac{1}{1 + r^2 + r}\right) \] 3. **Simplify the expression**: We can simplify \( \frac{1}{1 + r^2 + r} \) as follows: \[ 1 + r^2 + r = (r + 1)(r + 1) - r = (r + 1)^2 - r \] Thus, \[ t_r = \tan^{-1}\left(\frac{1}{(r + 1)(r + 1) - r}\right) \] 4. **Use the tangent subtraction formula**: We can express \( t_r \) using the formula for the difference of two arctangents: \[ t_r = \tan^{-1}(r + 1) - \tan^{-1}(r) \] 5. **Sum the series**: The sum \( S_n \) can be expressed as: \[ S_n = \sum_{r=1}^{n} t_r = \sum_{r=1}^{n} \left( \tan^{-1}(r + 1) - \tan^{-1}(r) \right) \] This is a telescoping series, which means that most terms will cancel out: \[ S_n = \tan^{-1}(n + 1) - \tan^{-1}(1) \] 6. **Evaluate specific cases**: - For \( n = 10 \): \[ S_{10} = \tan^{-1}(11) - \tan^{-1}(1) \] - For \( n \to \infty \): \[ S_{\infty} = \tan^{-1}(\infty) - \tan^{-1}(1) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \] - For \( n = 6 \): \[ S_6 = \tan^{-1}(7) - \tan^{-1}(1) \] - For \( n = 20 \): \[ S_{20} = \tan^{-1}(21) - \tan^{-1}(1) \] ### Conclusion: After evaluating the specific cases, we can determine which options are correct based on the values obtained.

To solve the problem, we need to evaluate the series \( S_n = \cot^{-1}(3) + \cot^{-1}(7) + \cot^{-1}(13) + \cot^{-1}(21) + \ldots \) up to \( n \) terms. ### Step-by-Step Solution: 1. **Identify the general term**: The terms in the series can be expressed as: \[ t_r = \cot^{-1}(1 + r^2 + r) ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

If S_n=cot^(-1)(3)+cot^(-1)(7)+cot^(-1)(13)+cot^(-1)(21)+ddotn terms, then (a) S_(10)=tan^(-1)(5/6) (b) S_oo=pi/4 (c) S_6=sin^(-1)(4/5) (d) S_(20)=cot^(-1)1. 1

Prove that cot^(-1)(13)+cot^(-1)(21)+cot^(-1)(-8)=pi .

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

2cot^(- 1)5+cot^(- 1)7+2cot^(- 1)8=pi/4

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

Prove that : cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3

Prove that : cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3

cot 6^0 cot 42^0 cot 66^0 cot 78^0=1

Find the sum cot^(-1) 2 + cot^(-1) 8 + cot^(-1) 18 + ...oo

Statement-1: cosec^(-1)(3)/(2)+cos^(-1)(2/3)-2cot^(-1)(1/7)-cot^(-1)7=cot^(-1)7 Statement-2: cos^(-1)x=sin^(-1)((1)/(x)) and for xgt0cot^(-1)x=tan^(-1)((1)/(x))

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Multiple correct answer type
  1. Which of the following quantities is/are positive ? a.cos (tan^(-1) (t...

    Text Solution

    |

  2. If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sq...

    Text Solution

    |

  3. If -1 lt x lt 0, then cos^(-1) x is equal to

    Text Solution

    |

  4. If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N1)y^(N...

    Text Solution

    |

  5. Indicate the relation which can hold in their respective domain for ...

    Text Solution

    |

  6. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  7. If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y), where xy< 0, then the ...

    Text Solution

    |

  8. The value of k(k >0) such that the length of the longest interval in w...

    Text Solution

    |

  9. Which of the following pairs of function/functions has same graph? y=...

    Text Solution

    |

  10. If sin −1 x+sin −1 y+sin −1 z=π, prove that x 1−x 2 ​ +y ...

    Text Solution

    |

  11. If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal t...

    Text Solution

    |

  12. If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2 then find a ...

    Text Solution

    |

  13. If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n th...

    Text Solution

    |

  14. If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

    Text Solution

    |

  15. If alpha=tan^(-1)((4x-4x^3)/(1-6x^2+x^2)),beta=2sin^(-1)((2x)/(1+x^2))...

    Text Solution

    |

  16. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r e x in R-{-1,1}, is equal t...

    Text Solution

    |

  17. Let alpha=som^(-1)((36)/(85)),beta=cos^(-1)(4/5)a n dgamma=tan^(-1)(8/...

    Text Solution

    |

  18. If Sn=cot^-1(3)+cot^-1(7)+cot^-1(13)+cot^-1(21)+....., n terms, then

    Text Solution

    |

  19. Equation 1+x^2+2x"sin"(cos^(-1)y)=0 is satisfied by exactly one value ...

    Text Solution

    |

  20. To the equation 2^2pi//cos^((-1)x)-(a+1/2)2^pi//cos^((-1)x)-a^2=0 has ...

    Text Solution

    |