Home
Class 12
MATHS
To the equation 2^2pi//cos^((-1)x)-(a+1/...

To the equation `2^2pi//cos^((-1)x)-(a+1/2)2^pi//cos^((-1)x)-a^2=0` has only one real root, then `1lt=alt=3` (b) `ageq1` `alt=-3` (d) `ageq3`

A

`1 le a le 3`

B

`a ge 1`

C

`a le -3`

D

`a ge 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2^{\frac{2\pi}{\cos^{-1} x}} - \left(a + \frac{1}{2}\right)2^{\frac{\pi}{\cos^{-1} x}} - a^2 = 0\) such that it has only one real root, we can follow these steps: ### Step 1: Substitute and Rearrange Let \( t = 2^{\frac{\pi}{\cos^{-1} x}} \). Then the equation can be rewritten as: \[ t^2 - \left(a + \frac{1}{2}\right)t - a^2 = 0 \] ### Step 2: Apply the Quadratic Formula Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), we have: - \( a = 1 \) - \( b = -\left(a + \frac{1}{2}\right) \) - \( c = -a^2 \) Substituting these values into the formula gives: \[ t = \frac{a + \frac{1}{2} \pm \sqrt{\left(a + \frac{1}{2}\right)^2 - 4 \cdot 1 \cdot (-a^2)}}{2 \cdot 1} \] ### Step 3: Simplify the Discriminant The discriminant \( D \) must be zero for the equation to have only one real root: \[ D = \left(a + \frac{1}{2}\right)^2 + 4a^2 \] Setting \( D = 0 \): \[ \left(a + \frac{1}{2}\right)^2 + 4a^2 = 0 \] ### Step 4: Solve the Discriminant Equation Expanding gives: \[ a^2 + a + \frac{1}{4} + 4a^2 = 0 \implies 5a^2 + a + \frac{1}{4} = 0 \] Using the quadratic formula again: \[ a = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 5 \cdot \frac{1}{4}}}{2 \cdot 5} = \frac{-1 \pm \sqrt{1 - 5}}{10} = \frac{-1 \pm \sqrt{-4}}{10} \] This indicates that \( a \) must be real, hence we need to analyze the conditions for the roots. ### Step 5: Analyze the Range of \( t \) The range of \( t = 2^{\frac{\pi}{\cos^{-1} x}} \) is \( [2, \infty) \) since \( \cos^{-1} x \) ranges from \( 0 \) to \( \pi \). ### Step 6: Set Conditions for \( a \) For the quadratic to have only one real root, we need: \[ \left(a + \frac{1}{2}\right)^2 - 4(-a^2) = 0 \implies a + \frac{1}{2} = \pm \sqrt{4a^2} \] This leads to two cases: 1. \( a + \frac{1}{2} = 2a \) 2. \( a + \frac{1}{2} = -2a \) ### Step 7: Solve Each Case 1. From \( a + \frac{1}{2} = 2a \): \[ \frac{1}{2} = a \implies a = \frac{1}{2} \] 2. From \( a + \frac{1}{2} = -2a \): \[ 3a = -\frac{1}{2} \implies a = -\frac{1}{6} \] ### Step 8: Check Conditions We need to check which of the options satisfy \( 1 \leq a \leq 3 \) or \( a \geq 1 \) or \( a \leq -3 \) or \( a \geq 3 \). ### Conclusion The valid conditions for \( a \) based on the analysis are: - \( a \geq 1 \) - \( a \leq -3 \) Thus, the correct options are: - (b) \( a \geq 1 \) - (c) \( a \leq -3 \)

To solve the equation \(2^{\frac{2\pi}{\cos^{-1} x}} - \left(a + \frac{1}{2}\right)2^{\frac{\pi}{\cos^{-1} x}} - a^2 = 0\) such that it has only one real root, we can follow these steps: ### Step 1: Substitute and Rearrange Let \( t = 2^{\frac{\pi}{\cos^{-1} x}} \). Then the equation can be rewritten as: \[ t^2 - \left(a + \frac{1}{2}\right)t - a^2 = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension type|16 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix match type|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Single correct|80 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The solution of the equation cos^(-1)x+cos^(-1)2x=(2pi)/(3) is

The equation 3 cos^(-1) x - pi x - (pi)/(2) =0 has

For the equation cos^(-1)x+cos^(-1)2x+pi=0 , the number of real solution is

Solve: cos^(- 1)xsqrt(3)+cos^(- 1)x=pi/2

For the equation cos^(-1)x+cos^(-1)2x+pi=0 , the number of real solution is (A)1 (B) 2 (C) 0 (D) oo

Find the value of x satisfying the equation 2cos^(-1)(1-x)-3cos^(-1)x=pi

The equation 2sin^(2)((x)/(2))cos^(2)x=x+(1)/(x),0 lt x le(pi)/(2) has

tan(pi/4+1/2cos^(-1)x)+tan(pi/4-1/2cos^(-1)x),x!=0, is equal to x (b) 2x (c) 2/x (d) none of these

The equation sin^4x-2cos^2x+a^2=0 can be solved if (a) -sqrt(3)lt=alt=sqrt(3) (b) sqrt(2)lt=alt=""sqrt(2) (c) -""1lt=alt=a (d) none of these

If the equation x^3+b x^2+c x+1=0,(b

CENGAGE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Multiple correct answer type
  1. Which of the following quantities is/are positive ? a.cos (tan^(-1) (t...

    Text Solution

    |

  2. If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sq...

    Text Solution

    |

  3. If -1 lt x lt 0, then cos^(-1) x is equal to

    Text Solution

    |

  4. If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2, then D=|x^(N1)y^(N...

    Text Solution

    |

  5. Indicate the relation which can hold in their respective domain for ...

    Text Solution

    |

  6. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  7. If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y), where xy< 0, then the ...

    Text Solution

    |

  8. The value of k(k >0) such that the length of the longest interval in w...

    Text Solution

    |

  9. Which of the following pairs of function/functions has same graph? y=...

    Text Solution

    |

  10. If sin −1 x+sin −1 y+sin −1 z=π, prove that x 1−x 2 ​ +y ...

    Text Solution

    |

  11. If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal t...

    Text Solution

    |

  12. If sin^(-1)(a-a^2/3+a^3/9-...)+cos^(-1)(1+b+b^2+...)=pi/2 then find a ...

    Text Solution

    |

  13. If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n th...

    Text Solution

    |

  14. If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

    Text Solution

    |

  15. If alpha=tan^(-1)((4x-4x^3)/(1-6x^2+x^2)),beta=2sin^(-1)((2x)/(1+x^2))...

    Text Solution

    |

  16. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r e x in R-{-1,1}, is equal t...

    Text Solution

    |

  17. Let alpha=som^(-1)((36)/(85)),beta=cos^(-1)(4/5)a n dgamma=tan^(-1)(8/...

    Text Solution

    |

  18. If Sn=cot^-1(3)+cot^-1(7)+cot^-1(13)+cot^-1(21)+....., n terms, then

    Text Solution

    |

  19. Equation 1+x^2+2x"sin"(cos^(-1)y)=0 is satisfied by exactly one value ...

    Text Solution

    |

  20. To the equation 2^2pi//cos^((-1)x)-(a+1/2)2^pi//cos^((-1)x)-a^2=0 has ...

    Text Solution

    |