Home
Class 12
MATHS
Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1...

Let `tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2))` , where `|x|<1/(sqrt(3))` . Then a value of y is : (1) `(3x-x^3)/(1-3x^2)` (2) `(3x+x^3)/(1-3x^2)` (3) `(3x-x^3)/(1+3x^2)` (4) `(3x+x^3)/(1+3x^2)`

A

`(3x -x^(3))/(1 -3x^(2))`

B

`(3x + x^(3))/(1 - 3x^(2))`

C

`(3x -x^(3))/(1 + 3x^(2))`

D

`(3x + x^(3))/(1 + 3x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} y = \tan^{-1} x + \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \), where \( |x| < \frac{1}{\sqrt{3}} \), we can use the addition formula for the tangent function. ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \tan^{-1} y = \tan^{-1} x + \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] 2. **Use the tangent addition formula:** The formula states that: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] if \( ab < 1 \). Here, let \( a = x \) and \( b = \frac{2x}{1 - x^2} \). 3. **Calculate \( ab \):** \[ ab = x \cdot \frac{2x}{1 - x^2} = \frac{2x^2}{1 - x^2} \] Since \( |x| < \frac{1}{\sqrt{3}} \), we can verify that \( ab < 1 \). 4. **Apply the addition formula:** \[ y = \frac{x + \frac{2x}{1 - x^2}}{1 - x \cdot \frac{2x}{1 - x^2}} \] 5. **Simplify the numerator:** \[ x + \frac{2x}{1 - x^2} = \frac{x(1 - x^2) + 2x}{1 - x^2} = \frac{x - x^3 + 2x}{1 - x^2} = \frac{3x - x^3}{1 - x^2} \] 6. **Simplify the denominator:** \[ 1 - x \cdot \frac{2x}{1 - x^2} = 1 - \frac{2x^2}{1 - x^2} = \frac{(1 - x^2) - 2x^2}{1 - x^2} = \frac{1 - 3x^2}{1 - x^2} \] 7. **Combine the results:** \[ y = \frac{\frac{3x - x^3}{1 - x^2}}{\frac{1 - 3x^2}{1 - x^2}} = \frac{3x - x^3}{1 - 3x^2} \] Thus, the value of \( y \) is: \[ y = \frac{3x - x^3}{1 - 3x^2} \] ### Final Answer: The value of \( y \) is \( \frac{3x - x^3}{1 - 3x^2} \), which corresponds to option (1).

To solve the equation \( \tan^{-1} y = \tan^{-1} x + \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \), where \( |x| < \frac{1}{\sqrt{3}} \), we can use the addition formula for the tangent function. ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \tan^{-1} y = \tan^{-1} x + \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Multiple correct answer type)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical value type|18 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE ENGLISH|Exercise MATRIX-MATCH TYPE|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)x+tan^(-1)(2x)/(1-x^2)=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/(sqrt(3))

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) then x^(4)-x^(2)(Sigma ab)+abcd=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=