Home
Class 12
MATHS
The line joining A(bcosalpha,bsinalpha) ...

The line joining `A(bcosalpha,bsinalpha)` and `B(acosbeta,asinbeta)` is produced to the point `M(x ,y)` so that `A M` and `B M` are in the ratio `b : adot` Then prove that `x+ytan((alpha+beta)/2)=0.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to prove that \( x + y \tan\left(\frac{\alpha + \beta}{2}\right) = 0 \) given the points \( A(b \cos \alpha, b \sin \alpha) \) and \( B(a \cos \beta, a \sin \beta) \), and the point \( M(x, y) \) such that the segments \( AM \) and \( BM \) are in the ratio \( b : a \). ### Step-by-Step Solution: 1. **Identify the Coordinates of Points A and B**: - Let \( A = (b \cos \alpha, b \sin \alpha) \) - Let \( B = (a \cos \beta, a \sin \beta) \) 2. **Set Up the Ratio Condition**: - The point \( M(x, y) \) divides the line segment \( AB \) in the ratio \( b : a \). Using the section formula, the coordinates of point \( M \) can be expressed as: \[ M = \left( \frac{b \cdot (a \cos \beta) + a \cdot (b \cos \alpha)}{b + a}, \frac{b \cdot (a \sin \beta) + a \cdot (b \sin \alpha)}{b + a} \right) \] 3. **Calculate the Coordinates of M**: - The x-coordinate of \( M \): \[ x = \frac{b \cdot (a \cos \beta) + a \cdot (b \cos \alpha)}{b + a} \] - The y-coordinate of \( M \): \[ y = \frac{b \cdot (a \sin \beta) + a \cdot (b \sin \alpha)}{b + a} \] 4. **Express x and y in Terms of Sine and Cosine**: - Factor out \( ab \): \[ x = \frac{ab \left( \frac{b}{b + a} \cos \beta + \frac{a}{b + a} \cos \alpha \right)} \] \[ y = \frac{ab \left( \frac{b}{b + a} \sin \beta + \frac{a}{b + a} \sin \alpha \right)} \] 5. **Divide x by y**: - To find the relationship between \( x \) and \( y \): \[ \frac{x}{y} = \frac{\frac{b \cos \beta + a \cos \alpha}{b + a}}{\frac{b \sin \beta + a \sin \alpha}{b + a}} = \frac{b \cos \beta + a \cos \alpha}{b \sin \beta + a \sin \alpha} \] 6. **Use Trigonometric Identities**: - Using the identities for cosine and sine: \[ \cos \beta - \cos \alpha = -2 \sin\left(\frac{\beta + \alpha}{2}\right) \sin\left(\frac{\beta - \alpha}{2}\right) \] \[ \sin \beta - \sin \alpha = 2 \cos\left(\frac{\beta + \alpha}{2}\right) \sin\left(\frac{\beta - \alpha}{2}\right) \] 7. **Substituting Back**: - Substitute these identities into the ratio: \[ \frac{x}{y} = \frac{-2 \sin\left(\frac{\beta + \alpha}{2}\right) \sin\left(\frac{\beta - \alpha}{2}\right)}{2 \cos\left(\frac{\beta + \alpha}{2}\right) \sin\left(\frac{\beta - \alpha}{2}\right)} = -\tan\left(\frac{\alpha + \beta}{2}\right) \] 8. **Final Step**: - Rearranging gives: \[ x + y \tan\left(\frac{\alpha + \beta}{2}\right) = 0 \] ### Conclusion: Thus, we have proved that \( x + y \tan\left(\frac{\alpha + \beta}{2}\right) = 0 \).

To solve the problem, we need to prove that \( x + y \tan\left(\frac{\alpha + \beta}{2}\right) = 0 \) given the points \( A(b \cos \alpha, b \sin \alpha) \) and \( B(a \cos \beta, a \sin \beta) \), and the point \( M(x, y) \) such that the segments \( AM \) and \( BM \) are in the ratio \( b : a \). ### Step-by-Step Solution: 1. **Identify the Coordinates of Points A and B**: - Let \( A = (b \cos \alpha, b \sin \alpha) \) - Let \( B = (a \cos \beta, a \sin \beta) \) ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.4|8 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.5|5 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.2|8 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

The line joining A(bcosalpha,bsinalpha) and B(acosbeta,asinbeta) is produced to the point M(x ,y) so that A M and B M are in the ratio b : adot Then xcos((alpha+beta)/2)+ysin((alpha+beta)/2)

If a straight line through the origin bisects the line passing through the given points (acosalpha,asinalpha) and (acosbeta,asinbeta), then the lines (a) are perpendicular (b) are parallel (c) have an angle between them of pi/4 (d) none of these

If alpha-beta= constant, then the locus of the point of intersection of tangents at P(acosalpha,bsinalpha) and Q(acosbeta,bsinbeta) to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 is: (a) a circle (b) a straight line (c) an ellipse (d) a parabola

If R(x , y) is a point on the line segment joining the points P(a , b)a n dQ(b , a), then prove that x+y=a+b

If R(x , y) is a point on the line segment joining the points P(a , b)a n dQ(b , a), then prove that x+y=a+b

If (x,y) be any point on the line segment joinijng the points (a,0)and (0,b) then prove that x/b+y/b=1.

Prove that the line y-x+2 =0 divides the join of points (3,-1) and (8,9) in the ratio 2:3.

If x/acosalpha+y/bsinalpha=1, x/acosbeta+y/bsinbeta=1 and (cos alpha cos beta)/a^2+(sin alpha sin beta)/b^2=0, then

If alpha and beta are two points on the hyperbola x^(2)/a^(2)-y^(2)/b^(2)=1 and the chord joining these two points passes through the focus (ae, 0) then e cos ""(alpha-beta)/(2)=

If P(x , y) is any point on the line joining the point A(a ,0)a n dB(0, b), then show that x/a+y/b=1.