Home
Class 12
MATHS
Convert the following Cartesian coordina...

Convert the following Cartesian coordinates to the cooresponding polar coordinates using positive r.
(i) `(1,-1)`
(ii) `(-3,-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To convert Cartesian coordinates to polar coordinates, we use the formulas: 1. \( r = \sqrt{x^2 + y^2} \) 2. \( \theta = \tan^{-1}\left(\frac{y}{x}\right) \) We also need to consider the quadrant in which the point lies to determine the correct angle \( \theta \). ### Step-by-Step Solution #### (i) For the point `(1, -1)` 1. **Calculate \( r \)**: \[ r = \sqrt{x^2 + y^2} = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \] 2. **Calculate \( \theta \)**: \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{-1}{1}\right) = \tan^{-1}(-1) \] The angle \( \tan^{-1}(-1) \) corresponds to \( -\frac{\pi}{4} \). Since we want the angle in the range \( [0, 2\pi) \), we can convert this to: \[ \theta = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4} \] 3. **Final Polar Coordinates**: \[ \text{Polar Coordinates} = \left(\sqrt{2}, \frac{7\pi}{4}\right) \] #### (ii) For the point `(-3, -4)` 1. **Calculate \( r \)**: \[ r = \sqrt{x^2 + y^2} = \sqrt{(-3)^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] 2. **Calculate \( \theta \)**: \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{-4}{-3}\right) = \tan^{-1}\left(\frac{4}{3}\right) \] Since the point is in the third quadrant, we need to add \( \pi \) to the angle: \[ \theta = \pi + \tan^{-1}\left(\frac{4}{3}\right) \] 3. **Final Polar Coordinates**: \[ \text{Polar Coordinates} = \left(5, \pi + \tan^{-1}\left(\frac{4}{3}\right)\right) \] ### Summary of Polar Coordinates - For the point `(1, -1)`: \( \left(\sqrt{2}, \frac{7\pi}{4}\right) \) - For the point `(-3, -4)`: \( \left(5, \pi + \tan^{-1}\left(\frac{4}{3}\right)\right) \)

To convert Cartesian coordinates to polar coordinates, we use the formulas: 1. \( r = \sqrt{x^2 + y^2} \) 2. \( \theta = \tan^{-1}\left(\frac{y}{x}\right) \) We also need to consider the quadrant in which the point lies to determine the correct angle \( \theta \). ### Step-by-Step Solution ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.6|9 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Exercises|59 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Concept applications 1.4|8 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

Convert the following Cartesian coordinates to the corresponding polar coordinates using positive r and negative rdot (i) ( i i ) (iii)(( i v ) (v)-1,1( v i ))( v i i ) (viii) (ii) ( i x ) (x)(( x i ) (xii)2,-3( x i i i ))( x i v ) (xv)

Convert the following points from polar coordinates to the corresponding Cartesian coordinates. (i) (2,pi//3) (ii) (0.pi//2) (iii) (-sqrt(2),pi//4)

The Cartesian coordinates of point having polar coordinates (-2, (2pi)/3) will be

The cartesian coordinates of the point whose polar coordinates are (13, pi - tan^(-1)((5)/(12))) is

Find the cartesian coordinates of the points whose polar coordinates are (5, pi - tan^(-1)((4)/(3)))

Convert the following polar coordinates to its equivalent Cartesian coordinates. (i) ( i i ) (iii)2,pi)( i v ) (v) (ii) ( v i ) (vii)(( v i i i ) (ix)sqrt(( x )2( x i ))( x i i ) , (xiii)pi/( x i v )6( x v ) (xvi) (xvii))( x v i i i ) (xix) (iii) ( x x ) (xxi)(( x x i i ) (xxiii)-3,-( x x i v )pi/( x x v )6( x x v i ) (xxvii) (xxviii))( x x i x ) (xxx)

Convert the polar coordinates to its equivalent Cartesian coordinates (2,pi) .

The polar coordinates of the point whose cartesian coordinates are (-1, -1) is

Find the polar coordinates of the points whose cartesian coordinates are (-3, 4)

Find the polar coordinates of the points whose cartesian coordinates are (-2, -2)