Home
Class 12
MATHS
If the points A(0,0),B(cosalpha,sinalpha...

If the points `A(0,0),B(cosalpha,sinalpha)`, and `C(cosbeta,sinbeta)` are the vertices of a right- angled triangle, then

A

`sin.(alpha-beta)/(2)=(1)/(sqrt2)`

B

`cos.(alpha-beta)/(2)=(1)/(sqrt2)`

C

`cos.(alpha-beta)/(2)=-(1)/(sqrt2)`

D

`sin.(alpha-beta)/(2)=-(1)/(sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the points \( A(0,0) \), \( B(\cos \alpha, \sin \alpha) \), and \( C(\cos \beta, \sin \beta) \) form a right-angled triangle, we will follow these steps: ### Step 1: Calculate the lengths of the sides of the triangle 1. **Length of AB**: \[ AB = \sqrt{(\cos \alpha - 0)^2 + (\sin \alpha - 0)^2} = \sqrt{\cos^2 \alpha + \sin^2 \alpha} = \sqrt{1} = 1 \] 2. **Length of AC**: \[ AC = \sqrt{(\cos \beta - 0)^2 + (\sin \beta - 0)^2} = \sqrt{\cos^2 \beta + \sin^2 \beta} = \sqrt{1} = 1 \] 3. **Length of BC**: \[ BC = \sqrt{(\cos \beta - \cos \alpha)^2 + (\sin \beta - \sin \alpha)^2} \] ### Step 2: Use the Pythagorean theorem Since \( AB = AC = 1 \), we can assume that \( A \) is the right angle. Therefore, we need to check if: \[ AB^2 + AC^2 = BC^2 \] Substituting the lengths we found: \[ 1^2 + 1^2 = BC^2 \Rightarrow 2 = BC^2 \Rightarrow BC = \sqrt{2} \] ### Step 3: Check the slopes of the lines 1. **Slope of AB**: \[ \text{slope of } AB = \frac{\sin \alpha - 0}{\cos \alpha - 0} = \tan \alpha \] 2. **Slope of AC**: \[ \text{slope of } AC = \frac{\sin \beta - 0}{\cos \beta - 0} = \tan \beta \] ### Step 4: Check if the lines are perpendicular Two lines are perpendicular if the product of their slopes is -1: \[ \tan \alpha \cdot \tan \beta = -1 \] This implies: \[ \tan \alpha = -\cot \beta \] ### Step 5: Relate angles Using the identity \( \tan \alpha = \tan\left(-\frac{\pi}{2} - \beta\right) \), we can deduce: \[ \alpha - \beta = -\frac{\pi}{2} \] ### Step 6: Conclusion Thus, we have shown that \( A(0,0) \), \( B(\cos \alpha, \sin \alpha) \), and \( C(\cos \beta, \sin \beta) \) form a right-angled triangle at point \( A \).

To prove that the points \( A(0,0) \), \( B(\cos \alpha, \sin \alpha) \), and \( C(\cos \beta, \sin \beta) \) form a right-angled triangle, we will follow these steps: ### Step 1: Calculate the lengths of the sides of the triangle 1. **Length of AB**: \[ AB = \sqrt{(\cos \alpha - 0)^2 + (\sin \alpha - 0)^2} = \sqrt{\cos^2 \alpha + \sin^2 \alpha} = \sqrt{1} = 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Linked|10 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Matrix match type|4 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Exercises|59 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

The points A(0, 0), B(cos alpha, sin alpha) and C(cos beta, sin beta) are the vertices of a right angled triangle if :

Prove that the points A(1, -3), B (-3, 0) and C(4, 1) are the vertices of an isosceles right- angled triangle. Find the area of the triangle.

Show that the points A(7, 10), B(-2, 5) and C(3, -4) are the vertices of an isosceles right-angled triangle.

The points A(4, 7), B(p, 3) and C(7, 3) are the vertices of a right triangle, right-angled at B, Find the values of P.

The distance between the points (a cosalpha, a sinalpha) and (a cosbeta, a sinbeta) where a> 0

The distance between the points (a cosalpha, a sinalpha) and (a cosbeta, a sinbeta) where a> 0

The distance between the points (a cosalpha, a sinalpha) and (a cosbeta, a sinbeta) where a> 0

Show that the points A(2,-1,3),B(1,-3,1) and C(0,1,2) are the vertices of an isosceles right angled triangle.

Prove that the points A (1,-3) B (-3,0) and C(4,1) are the vertices of an isosceles right angle triangle. Find the area of the triangle.

Without using Pythagoras theorem, show that the points A(0,4),\ B(1,2)a n d\ C(3,3) are the vertices of a right angled triangle.