Home
Class 12
MATHS
In a A B C ,A-=(alpha,beta),B-=(1,2),C-...

In a ` A B C ,A-=(alpha,beta),B-=(1,2),C-=(2,3),` point `A` lies on the line `y=2x+3,` where `alpha,beta` are integers, and the area of the triangle is `S` such that `[S]=2` where `[` .`]` denotes the greatest integer function. Then the possible coordinates of `A` can be `(-7,-11)` `(-6,-9)` `(2,7)` `(3,9)`

A

`(-7,-11)`

B

`(-6,-9)`

C

(2,7)

D

(3,9)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find the coordinates of point A (α, β) such that it lies on the line \(y = 2x + 3\) and the area of triangle ABC is such that \([S] = 2\), where \([S]\) denotes the greatest integer function. ### Step 1: Determine the coordinates of point A Since point A lies on the line \(y = 2x + 3\), we can express the coordinates of point A as: \[ A = (α, β) = (α, 2α + 3) \] ### Step 2: Identify the coordinates of points B and C The coordinates of points B and C are given as: \[ B = (1, 2), \quad C = (2, 3) \] ### Step 3: Use the formula for the area of a triangle The area \(S\) of triangle ABC can be calculated using the formula: \[ S = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Substituting the coordinates of points A, B, and C into this formula: \[ S = \frac{1}{2} \left| α(2 - 3) + 1(3 - (2α + 3)) + 2((2α + 3) - 2) \right| \] ### Step 4: Simplify the area expression Substituting and simplifying: \[ S = \frac{1}{2} \left| α(-1) + 1(3 - 2α - 3) + 2(2α + 3 - 2) \right| \] \[ = \frac{1}{2} \left| -α + (-2α) + 2(2α + 1) \right| \] \[ = \frac{1}{2} \left| -α - 2α + 4α + 2 \right| \] \[ = \frac{1}{2} \left| α + 2 \right| \] ### Step 5: Set the area condition We are given that \([S] = 2\). This means: \[ 2 \leq S < 3 \] Substituting for \(S\): \[ 2 \leq \frac{1}{2} |α + 2| < 3 \] ### Step 6: Solve the inequalities Multiplying through by 2: \[ 4 \leq |α + 2| < 6 \] This gives us two cases to consider for \( |α + 2| \): 1. \(α + 2 \geq 4\) or \(α + 2 \leq -4\) 2. \(α + 2 < 6\) and \(α + 2 > -6\) From \(α + 2 \geq 4\): \[ α \geq 2 \] From \(α + 2 < 6\): \[ α < 4 \] From \(α + 2 \leq -4\): \[ α \leq -6 \] From \(α + 2 > -6\): \[ α > -8 \] ### Step 7: Combine the results Combining these inequalities, we have two ranges: 1. \(2 \leq α < 4\) 2. \(-8 < α \leq -6\) ### Step 8: Determine integer values for α The integer values of \(α\) that satisfy these conditions are: - From \(2 \leq α < 4\): \(α = 2, 3\) - From \(-8 < α \leq -6\): \(α = -7, -6\) ### Step 9: Calculate corresponding β values Now, we can find the corresponding \(β\) values using \(β = 2α + 3\): 1. For \(α = 2\): \(β = 2(2) + 3 = 7\) → Point A = (2, 7) 2. For \(α = 3\): \(β = 2(3) + 3 = 9\) → Point A = (3, 9) 3. For \(α = -7\): \(β = 2(-7) + 3 = -11\) → Point A = (-7, -11) 4. For \(α = -6\): \(β = 2(-6) + 3 = -9\) → Point A = (-6, -9) ### Final Possible Coordinates of A The possible coordinates of point A are: - \((-7, -11)\) - \((-6, -9)\) - \((2, 7)\) - \((3, 9)\)

To solve the problem step by step, we will find the coordinates of point A (α, β) such that it lies on the line \(y = 2x + 3\) and the area of triangle ABC is such that \([S] = 2\), where \([S]\) denotes the greatest integer function. ### Step 1: Determine the coordinates of point A Since point A lies on the line \(y = 2x + 3\), we can express the coordinates of point A as: \[ A = (α, β) = (α, 2α + 3) \] ...
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Linked|10 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Matrix match type|4 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Exercises|59 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

In a A B C ,A-=(alpha,beta),B-=(1,2),C-=(2,3), point A lies on the line y=2x+3, where alpha,beta are integers, and the area of the triangle is S such that [S]=2 where [ . ] denotes the greatest integer function. Then the possible coordinates of A can be (a) (-7,-11) (b) (-6,-9) (c) (2,7) (d) (3,9)

if alpha is a real root of 2x^3-3x^2 + 6x + 6 = 0, then find [alpha ] where [] denotes the greatest integer function.

Area of the region bounded by [x] ^(2) =[y] ^(2), if x in [1,5] , where [ ] denotes the greatest integer function is:

In a triangle A B C ,A=(alpha,beta)B=(2,3),a n dC=(1,3)dot Point A lies on line y=2x+3, where alpha in Idot The area of A B C , , is such that [Delta]=5 . The possible coordinates of A are (where [.] represents greatest integer function). (a) (2,3) (b) (5,13) (-5,-7) (d) (-3,-5)

If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b) 5 (c) 6 (d) -7

The area enclosed by the curve [x+3y]=[x-2] where x in [3,4] is : (where[.] denotes greatest integer function)

The period of the function f(x)=[6x+7]+cospix-6x , where [dot] denotes the greatest integer function is: (a)3 (b) 2 pi (c) 2 (d) none of these

If [x]^2-5[x]+6=0, where [.] denotes the greatest integer function, then x in [3,4] (b) x in (2,3] (c) x in [2,3] (d) x in [2,4)

If the least bounded by the curves y=x^(2) and y=lamdax+12 is equal to (alpha)/(beta) , then [(alpha)/(20beta)] is equal to ________(where [.] denotes the greatest integer function)

If complete solution set of e ^(-x) le 4- x is [alpha, beta] then [alpha] + [beta ] is equal to : (where [.] denotes greatest integer function )