Home
Class 11
MATHS
Two adjacent sides of a parallelogram AB...

Two adjacent sides of a parallelogram ABCD are `2hati+4hatj -5 hatkand hati+2hatj+3hatk`. Then the value of `|vec(AC)xxvec(BD)|` is

A

`20sqrt5`

B

`22sqrt5`

C

`24sqrt5`

D

`26sqrt5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\vec{AC} \times \vec{BD}|\) given the two adjacent sides of a parallelogram \( \vec{AB} = 2\hat{i} + 4\hat{j} - 5\hat{k} \) and \( \vec{BC} = \hat{i} + 2\hat{j} + 3\hat{k} \). ### Step-by-Step Solution: 1. **Identify the vectors:** - Let \( \vec{AB} = 2\hat{i} + 4\hat{j} - 5\hat{k} \) - Let \( \vec{BC} = \hat{i} + 2\hat{j} + 3\hat{k} \) 2. **Use the property of the diagonals of a parallelogram:** - The property states that \( \vec{AC} \times \vec{BD} = 2(\vec{AB} \times \vec{BC}) \). 3. **Calculate the cross product \( \vec{AB} \times \vec{BC} \):** \[ \vec{AB} \times \vec{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & -5 \\ 1 & 2 & 3 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i} \begin{vmatrix} 4 & -5 \\ 2 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -5 \\ 1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 4 \\ 1 & 2 \end{vmatrix} \] - Calculate each of the 2x2 determinants: - \( \begin{vmatrix} 4 & -5 \\ 2 & 3 \end{vmatrix} = (4)(3) - (-5)(2) = 12 + 10 = 22 \) - \( \begin{vmatrix} 2 & -5 \\ 1 & 3 \end{vmatrix} = (2)(3) - (-5)(1) = 6 + 5 = 11 \) - \( \begin{vmatrix} 2 & 4 \\ 1 & 2 \end{vmatrix} = (2)(2) - (4)(1) = 4 - 4 = 0 \) - Substitute back into the equation: \[ \vec{AB} \times \vec{BC} = 22\hat{i} - 11\hat{j} + 0\hat{k} = 22\hat{i} - 11\hat{j} \] 4. **Calculate \( \vec{AC} \times \vec{BD} \):** \[ \vec{AC} \times \vec{BD} = 2(\vec{AB} \times \vec{BC}) = 2(22\hat{i} - 11\hat{j}) = 44\hat{i} - 22\hat{j} \] 5. **Find the magnitude:** \[ |\vec{AC} \times \vec{BD}| = |44\hat{i} - 22\hat{j}| = \sqrt{(44)^2 + (-22)^2} = \sqrt{1936 + 484} = \sqrt{2420} \] - Simplifying \( \sqrt{2420} \): \[ = \sqrt{4 \times 605} = 2\sqrt{605} \] 6. **Final answer:** \[ |\vec{AC} \times \vec{BD}| = 2\sqrt{605} \]

To solve the problem, we need to find the value of \(|\vec{AC} \times \vec{BD}|\) given the two adjacent sides of a parallelogram \( \vec{AB} = 2\hat{i} + 4\hat{j} - 5\hat{k} \) and \( \vec{BC} = \hat{i} + 2\hat{j} + 3\hat{k} \). ### Step-by-Step Solution: 1. **Identify the vectors:** - Let \( \vec{AB} = 2\hat{i} + 4\hat{j} - 5\hat{k} \) - Let \( \vec{BC} = \hat{i} + 2\hat{j} + 3\hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

The two adjacent sides of a parallelogram are 2hati+3hatj-5hatk and hati+2hatj+3hatk . Find the uit vectors along the diagonal of te parallelogram.

The sides of a parallelogram are 2hati +4hatj -5hatk and hati + 2hatj +3hatk . The unit vector parallel to one of the diagonals is

Vectors along the adjacent sides of parallelogram are veca = 2hati +4hatj -5hatk and vecb = hati + 2hatj +3hatk . Find the length of the longer diagonal of the parallelogram.

The sides of a parallelogram are 2 hati + 4 hatj -5 hatk and hati + 2 hatj + 3 hatk , then the unit vector parallel to one of the diagonals is

If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati - 3 hatj + 4 hatk, then the lengths of its sides are

Vectors along the adjacent sides of parallelogram are veca = hati +2hatj +hatk and vecb = 2hati + 4hatj +hatk . Find the length of the longer diagonal of the parallelogram.

Area of a parallelogram, whose diagonals are 3hati+hatj-2hatk and hati-3hatj+4hatk will be:

Two sides of a triangle are given by hati+hatj+hatk and -hati+2hatj+3hatk then area of triangle is

Find the area of the parallelogram having diagonals 2hati-hatj+hatk and 3hati+3hatj-hatk

The adjacent sides of a parallelogram is given by two vector A and B where A=5hati-4hatj+3hatkand B=3hati-2hatj+hatk Calculate the area of parallelogram .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.ve...

    Text Solution

    |

  2. P (vecp) and Q (vecq) are the position vectors of two fixed points and...

    Text Solution

    |

  3. Two adjacent sides of a parallelogram ABCD are 2hati+4hatj -5 hatkand ...

    Text Solution

    |

  4. If hat a , hat b ,a n d hat c are three unit vectors inclined to ea...

    Text Solution

    |

  5. Let the pair of vector veca,vecb and vecc,veccd each determine a plane...

    Text Solution

    |

  6. If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non...

    Text Solution

    |

  7. If veca satisfies vecaxx(hati+2hatj+hatk)=hati-hatk" then " veca is eq...

    Text Solution

    |

  8. Vectors 3veca-5vecb and 2veca + vecb are mutually perpendicular. If ve...

    Text Solution

    |

  9. The units vectors orthogonal to the vector - hat i + 2hat j + 2hat k ...

    Text Solution

    |

  10. The value of x for which the angle between veca = 2x^(2) hati + 4x h...

    Text Solution

    |

  11. If vectors veca and vecb are two adjacent sides of parallelograsm then...

    Text Solution

    |

  12. A parallelogram is constructed on 3veca+vecb and veca-4vecb, where |ve...

    Text Solution

    |

  13. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  14. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  15. Let the position vectors of the points Pa n dQ be 4 hat i+ hat j+lam...

    Text Solution

    |

  16. A vector of magnitude sqrt2 coplanar with the vectors veca=hati+hatj+2...

    Text Solution

    |

  17. Let P be a point interior to the acute triangle A B Cdot If P A+P B...

    Text Solution

    |

  18. G is the centroid of triangle ABC and A1 and B1 are the midpoints of s...

    Text Solution

    |

  19. Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2...

    Text Solution

    |

  20. If veca and vecb are any two vectors of magnitudes 1and 2. respectivel...

    Text Solution

    |