Home
Class 11
MATHS
If vecr.veca=vecr.vecb=vecr.vecc=0 " whe...

If `vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc` are non-coplanar, then

A

`vecrbot(veccxxveca)`

B

`vecrbot(vecaxxvecb)`

C

`vecrbot(vecbxxvecc)`

D

`vecr=vec0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given conditions and analyze them logically. ### Step-by-Step Solution: 1. **Given Information**: We have three vectors \( \vec{a}, \vec{b}, \vec{c} \) which are non-coplanar. Additionally, we know: \[ \vec{r} \cdot \vec{a} = 0, \quad \vec{r} \cdot \vec{b} = 0, \quad \vec{r} \cdot \vec{c} = 0 \] 2. **Understanding the Dot Product**: The dot product \( \vec{r} \cdot \vec{a} = 0 \) implies that vector \( \vec{r} \) is orthogonal (perpendicular) to vector \( \vec{a} \). Similarly, \( \vec{r} \) is also orthogonal to \( \vec{b} \) and \( \vec{c} \). 3. **Implication of Orthogonality**: Since \( \vec{r} \) is orthogonal to three non-coplanar vectors \( \vec{a}, \vec{b}, \vec{c} \), it suggests that \( \vec{r} \) must lie in the plane formed by these vectors. However, since \( \vec{a}, \vec{b}, \vec{c} \) are non-coplanar, they cannot all lie in the same plane. 4. **Conclusion from Orthogonality**: If \( \vec{r} \) is orthogonal to three non-coplanar vectors, it implies that \( \vec{r} \) must be the zero vector. This is because the only vector that is orthogonal to all vectors in three-dimensional space is the zero vector. 5. **Final Result**: Therefore, we conclude that: \[ \vec{r} = \vec{0} \]

To solve the problem step by step, we start with the given conditions and analyze them logically. ### Step-by-Step Solution: 1. **Given Information**: We have three vectors \( \vec{a}, \vec{b}, \vec{c} \) which are non-coplanar. Additionally, we know: \[ \vec{r} \cdot \vec{a} = 0, \quad \vec{r} \cdot \vec{b} = 0, \quad \vec{r} \cdot \vec{c} = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecp+ vecq+vecr) is (a)3 (b)2 (c)1 (d)0

Solve veca.vecr=x, vecb.vecr=y, vecc.vecr=z where veca,vecb,vecc are given non coplasnar vectors.

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If (vecaxxvecb)xx(vecbxxvecc)=vecb, where veca,vecb and vecc are non zero vectors then (A) veca,vecb and vecc can be coplanar (B) veca,vecb and vecc must be coplanar (C) veca,vecb and vecc cannot be coplanar (D) none of these

If is given that vecx= (vecbxxvecc)/([veca,vecb,vecc]), vecy=(veccxxveca)/[(veca,vecb,vecc)], vecz=(vecaxxvecb)/[(veca,vecb,vecc)] where veca,vecb,vecc are non coplanar vectors. Find the value of vecx.(veca+vecb)+vecy.(vecc+vecb)+vecz(vecc+veca)

If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and veca,vecb,vecc are non coplanar, then the area of the triangle whose vertices are A(veca),B(vecb) and C(vecc) is

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,vecb,vecc)]),vecr=(vecaxxvecb)/([(veca,vecb,vecb)]) where veca,vecb,vecc are three non-coplanar vectors, then the value of the expression (veca+vecb+vecc).(vecp+vecq+vecr) is

Let vecr = (veca xx vecb)sinx + (vecb xx vecc)cosy+(vecc xx veca) , where veca,vecb and vecc are non-zero non-coplanar vectors, If vecr is orthogonal to 3veca + 5vecb+2vecc , then the value of sec^(2)y+"cosec"^(2)x+secy" cosec "x is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If hat a , hat b ,a n d hat c are three unit vectors inclined to ea...

    Text Solution

    |

  2. Let the pair of vector veca,vecb and vecc,veccd each determine a plane...

    Text Solution

    |

  3. If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non...

    Text Solution

    |

  4. If veca satisfies vecaxx(hati+2hatj+hatk)=hati-hatk" then " veca is eq...

    Text Solution

    |

  5. Vectors 3veca-5vecb and 2veca + vecb are mutually perpendicular. If ve...

    Text Solution

    |

  6. The units vectors orthogonal to the vector - hat i + 2hat j + 2hat k ...

    Text Solution

    |

  7. The value of x for which the angle between veca = 2x^(2) hati + 4x h...

    Text Solution

    |

  8. If vectors veca and vecb are two adjacent sides of parallelograsm then...

    Text Solution

    |

  9. A parallelogram is constructed on 3veca+vecb and veca-4vecb, where |ve...

    Text Solution

    |

  10. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  11. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  12. Let the position vectors of the points Pa n dQ be 4 hat i+ hat j+lam...

    Text Solution

    |

  13. A vector of magnitude sqrt2 coplanar with the vectors veca=hati+hatj+2...

    Text Solution

    |

  14. Let P be a point interior to the acute triangle A B Cdot If P A+P B...

    Text Solution

    |

  15. G is the centroid of triangle ABC and A1 and B1 are the midpoints of s...

    Text Solution

    |

  16. Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2...

    Text Solution

    |

  17. If veca and vecb are any two vectors of magnitudes 1and 2. respectivel...

    Text Solution

    |

  18. If veca and vecb are any two vectors of magnitude 2 and 3 respective...

    Text Solution

    |

  19. veca, vecb and vecc are unit vecrtors such that |veca + vecb+ 3vecc|=4...

    Text Solution

    |

  20. If the vector product of a constant vector vec O A with a variable ...

    Text Solution

    |