Home
Class 11
MATHS
If veca satisfies vecaxx(hati+2hatj+hatk...

If `veca` satisfies `vecaxx(hati+2hatj+hatk)=hati-hatk" then " veca` is equal to

A

a) `lambdahati+(2lambda-1)hatj+lambdahatk,lambda in R`

B

b) `lambdahati+(1-2lambda)hatj+lambdahatk,lambda in R`

C

c) `lambdahati+(2lambda+1)hatj+lambdahatk,lambda in R`

D

d) `lambdahati+(1+2lambda)hatj+lambdahatk,lambda in R`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the vector \(\vec{a}\) that satisfies the equation: \[ \vec{a} \times \vec{v} = \hat{i} - \hat{k} \] where \(\vec{v} = \hat{i} + 2\hat{j} + \hat{k}\). ### Step 1: Write the cross product equation We start with the equation: \[ \vec{a} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i} - \hat{k} \] ### Step 2: Use the properties of cross products Recall that the cross product of vectors has the following properties: - \(\hat{i} \times \hat{i} = \vec{0}\) - \(\hat{j} \times \hat{j} = \vec{0}\) - \(\hat{k} \times \hat{k} = \vec{0}\) - \(\hat{j} \times \hat{i} = -\hat{k}\) - \(\hat{k} \times \hat{j} = \hat{i}\) - \(\hat{i} \times \hat{k} = \hat{j}\) ### Step 3: Express \(\vec{a}\) in terms of its components Let \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\). Then we can expand the left-hand side: \[ \vec{a} \times (\hat{i} + 2\hat{j} + \hat{k}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ 1 & 2 & 1 \end{vmatrix} \] ### Step 4: Calculate the determinant Calculating the determinant, we have: \[ \vec{a} \times (\hat{i} + 2\hat{j} + \hat{k}) = \hat{i}(a_2 \cdot 1 - a_3 \cdot 2) - \hat{j}(a_1 \cdot 1 - a_3 \cdot 1) + \hat{k}(a_1 \cdot 2 - a_2 \cdot 1) \] This simplifies to: \[ \vec{a} \times (\hat{i} + 2\hat{j} + \hat{k}) = (a_2 - 2a_3)\hat{i} - (a_1 - a_3)\hat{j} + (2a_1 - a_2)\hat{k} \] ### Step 5: Set the components equal to \(\hat{i} - \hat{k}\) Now, we equate the components from both sides: 1. \(a_2 - 2a_3 = 1\) (coefficient of \(\hat{i}\)) 2. \(-(a_1 - a_3) = 0\) (coefficient of \(\hat{j}\)) 3. \(2a_1 - a_2 = -1\) (coefficient of \(\hat{k}\)) ### Step 6: Solve the system of equations From the second equation, we have: \[ a_1 = a_3 \] Substituting \(a_1 = a_3\) into the first equation: \[ a_2 - 2a_1 = 1 \implies a_2 = 1 + 2a_1 \] Now substituting \(a_1\) and \(a_2\) into the third equation: \[ 2a_1 - (1 + 2a_1) = -1 \] This simplifies to: \[ 2a_1 - 1 - 2a_1 = -1 \implies -1 = -1 \] This is always true, meaning \(a_1\) can take any value. Let \(a_1 = \lambda\), then: - \(a_3 = \lambda\) - \(a_2 = 1 + 2\lambda\) ### Step 7: Write the final expression for \(\vec{a}\) Thus, we can write: \[ \vec{a} = \lambda \hat{i} + (1 + 2\lambda) \hat{j} + \lambda \hat{k} \] where \(\lambda\) is any real number. ### Final Answer: \[ \vec{a} = \lambda \hat{i} + (1 + 2\lambda) \hat{j} + \lambda \hat{k}, \quad \lambda \in \mathbb{R} \] ---

To solve the given problem, we need to find the vector \(\vec{a}\) that satisfies the equation: \[ \vec{a} \times \vec{v} = \hat{i} - \hat{k} \] where \(\vec{v} = \hat{i} + 2\hat{j} + \hat{k}\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati-3hatj+4hatk, veca.vecb=2 and veca xx vecb=hati+2hatj+hatk , then vecb is equal to

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

If veca=hati+hatj+hatk, vecb=hati-hatj+hatk, vec c=hati+2hatj-hatk , then the value of |(veca*veca,veca*vecb, veca*vecc),(vecb*veca, vecb *vecb,vecb*vecc),(vec c*veca, vec c*vec b,vec c*vec c)| is equal to :

If veca=2hati + hatj + hatk , vecb=hati + 2hatj + 2hatk then [veca vecb veci] hati + [veca vecb vecj] hatj + [veca vecb hatk] k is equal to

Find the projection of vecb+vecc on veca where veca=hati+2hatj+hatk, vecb=hati+3hatj+hatk and vecc=hati+hatk .

If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -hatk , " then " vecb is (a) hati - hatj + hatk (b) 2hati - hatk (c) hati (d) 2hati

If veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk) . Then find the unit vector veca .

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Let the pair of vector veca,vecb and vecc,veccd each determine a plane...

    Text Solution

    |

  2. If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non...

    Text Solution

    |

  3. If veca satisfies vecaxx(hati+2hatj+hatk)=hati-hatk" then " veca is eq...

    Text Solution

    |

  4. Vectors 3veca-5vecb and 2veca + vecb are mutually perpendicular. If ve...

    Text Solution

    |

  5. The units vectors orthogonal to the vector - hat i + 2hat j + 2hat k ...

    Text Solution

    |

  6. The value of x for which the angle between veca = 2x^(2) hati + 4x h...

    Text Solution

    |

  7. If vectors veca and vecb are two adjacent sides of parallelograsm then...

    Text Solution

    |

  8. A parallelogram is constructed on 3veca+vecb and veca-4vecb, where |ve...

    Text Solution

    |

  9. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  10. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  11. Let the position vectors of the points Pa n dQ be 4 hat i+ hat j+lam...

    Text Solution

    |

  12. A vector of magnitude sqrt2 coplanar with the vectors veca=hati+hatj+2...

    Text Solution

    |

  13. Let P be a point interior to the acute triangle A B Cdot If P A+P B...

    Text Solution

    |

  14. G is the centroid of triangle ABC and A1 and B1 are the midpoints of s...

    Text Solution

    |

  15. Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2...

    Text Solution

    |

  16. If veca and vecb are any two vectors of magnitudes 1and 2. respectivel...

    Text Solution

    |

  17. If veca and vecb are any two vectors of magnitude 2 and 3 respective...

    Text Solution

    |

  18. veca, vecb and vecc are unit vecrtors such that |veca + vecb+ 3vecc|=4...

    Text Solution

    |

  19. If the vector product of a constant vector vec O A with a variable ...

    Text Solution

    |

  20. Let vecu, vecv and vecw be such that |vecu|=1,|vecv|=2 and |vecw|=3 if...

    Text Solution

    |