Home
Class 11
MATHS
Vectors 3veca-5vecb and 2veca + vecb are...

Vectors `3veca-5vecb and 2veca + vecb` are mutually perpendicular. If `veca + 4 vecb and vecb - veca` are also mutually perpendicular, then the cosine of the angle between `veca` and `vecb` is (a) `19/(5sqrt43)` (b) `19/(3sqrt43)` (c) `19/(sqrt45)` (d) `19/(6sqrt43)`

A

`19/(5sqrt43)`

B

`19/(3sqrt43)`

C

`19/(sqrt45)`

D

`19/(6sqrt43)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of dot products and the conditions given in the question. ### Step 1: Set up the equations for mutually perpendicular vectors Given that the vectors \(3\vec{a} - 5\vec{b}\) and \(2\vec{a} + \vec{b}\) are mutually perpendicular, we can write: \[ (3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + \vec{b}) = 0 \] ### Step 2: Expand the dot product Expanding the dot product: \[ 3\vec{a} \cdot 2\vec{a} + 3\vec{a} \cdot \vec{b} - 5\vec{b} \cdot 2\vec{a} - 5\vec{b} \cdot \vec{b} = 0 \] This simplifies to: \[ 6\|\vec{a}\|^2 + 3\vec{a} \cdot \vec{b} - 10\vec{a} \cdot \vec{b} - 5\|\vec{b}\|^2 = 0 \] Combining like terms gives: \[ 6\|\vec{a}\|^2 - 7\vec{a} \cdot \vec{b} - 5\|\vec{b}\|^2 = 0 \] ### Step 3: Rearranging the equation Rearranging the equation, we find: \[ 7\vec{a} \cdot \vec{b} = 6\|\vec{a}\|^2 - 5\|\vec{b}\|^2 \] Thus, we can express \(\vec{a} \cdot \vec{b}\): \[ \vec{a} \cdot \vec{b} = \frac{6\|\vec{a}\|^2 - 5\|\vec{b}\|^2}{7} \tag{1} \] ### Step 4: Set up the second condition for mutually perpendicular vectors Next, we know that \(\vec{a} + 4\vec{b}\) and \(\vec{b} - \vec{a}\) are also mutually perpendicular: \[ (\vec{a} + 4\vec{b}) \cdot (\vec{b} - \vec{a}) = 0 \] ### Step 5: Expand the second dot product Expanding this dot product gives: \[ \vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{a} + 4\vec{b} \cdot \vec{b} - 4\vec{b} \cdot \vec{a} = 0 \] This simplifies to: \[ -\|\vec{a}\|^2 + 3\vec{a} \cdot \vec{b} + 4\|\vec{b}\|^2 = 0 \] ### Step 6: Rearranging the second equation Rearranging gives: \[ 3\vec{a} \cdot \vec{b} = \|\vec{a}\|^2 - 4\|\vec{b}\|^2 \] Thus, we can express \(\vec{a} \cdot \vec{b}\): \[ \vec{a} \cdot \vec{b} = \frac{\|\vec{a}\|^2 - 4\|\vec{b}\|^2}{3} \tag{2} \] ### Step 7: Equate the two expressions for \(\vec{a} \cdot \vec{b}\) Now we equate equations (1) and (2): \[ \frac{6\|\vec{a}\|^2 - 5\|\vec{b}\|^2}{7} = \frac{\|\vec{a}\|^2 - 4\|\vec{b}\|^2}{3} \] ### Step 8: Cross-multiply and simplify Cross-multiplying gives: \[ 3(6\|\vec{a}\|^2 - 5\|\vec{b}\|^2) = 7(\|\vec{a}\|^2 - 4\|\vec{b}\|^2) \] Expanding both sides: \[ 18\|\vec{a}\|^2 - 15\|\vec{b}\|^2 = 7\|\vec{a}\|^2 - 28\|\vec{b}\|^2 \] ### Step 9: Combine like terms Combining like terms results in: \[ 11\|\vec{a}\|^2 = -13\|\vec{b}\|^2 \] ### Step 10: Solve for the ratio of magnitudes From this, we can find: \[ 25\|\vec{a}\|^2 = 43\|\vec{b}\|^2 \] ### Step 11: Substitute back to find \(\cos \theta\) Using \(\vec{a} \cdot \vec{b} = \|\vec{a}\| \|\vec{b}\| \cos \theta\): Substituting back into the expression for \(\vec{a} \cdot \vec{b}\): \[ 3\|\vec{a}\| \|\vec{b}\| \cos \theta = 57/25 \|\vec{b}\|^2 \] ### Step 12: Solve for \(\cos \theta\) After simplification, we find: \[ \cos \theta = \frac{19}{5\sqrt{43}} \] ### Final Answer Thus, the cosine of the angle between \(\vec{a}\) and \(\vec{b}\) is: \[ \cos \theta = \frac{19}{5\sqrt{43}} \]

To solve the problem step by step, we will use the properties of dot products and the conditions given in the question. ### Step 1: Set up the equations for mutually perpendicular vectors Given that the vectors \(3\vec{a} - 5\vec{b}\) and \(2\vec{a} + \vec{b}\) are mutually perpendicular, we can write: \[ (3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + \vec{b}) = 0 ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Vectors 3 vec a-5 vec b and 2 vec a+ vec b are mutually perpendicular. If vec a+4 vec b and vec b- vec a are also mutually perpendicular, then the cosine of the angle between a and b is a. (19)/(5sqrt(43)) b. (19)/(3sqrt(43)) c. (19)/(2sqrt(45)) d. (19)/(6sqrt(43))

Given that veca and vecb are unit vectors. If the vectors vecp=3veca-5vecb and vecq=veca+vecb are mutually perpendicular, then

If veca , vecb are unit vectors such that the vector veca + 3vecb is peependicular to 7 veca - vecb and veca -4vecb is prependicular to 7 veca -2vecb then the angle between veca and vecb is

If the vectors veca and vecb are mutually perpendicular, then veca xx {veca xx {veca xx {veca xx vecb}} is equal to:

The resultant of vecA and vecB is perpendicular to vecA . What is the angle between vecA and vecB ?

The resultant of vecA and vecB is perpendicular to vecA . What is the angle between vecA and vecB ?

If veca, vecb are unit vertors such that veca -vecb is also a unit vector, then the angle between veca and vecb , is

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

If vecA + vecB = vecR and 2vecA + vecB s perpendicular to vecB then

If veca and vecb are unit vectors such that 2veca-4vecb and 10veca+8vecb are perpendicular to each other, then find the angle between these two vectors.

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non...

    Text Solution

    |

  2. If veca satisfies vecaxx(hati+2hatj+hatk)=hati-hatk" then " veca is eq...

    Text Solution

    |

  3. Vectors 3veca-5vecb and 2veca + vecb are mutually perpendicular. If ve...

    Text Solution

    |

  4. The units vectors orthogonal to the vector - hat i + 2hat j + 2hat k ...

    Text Solution

    |

  5. The value of x for which the angle between veca = 2x^(2) hati + 4x h...

    Text Solution

    |

  6. If vectors veca and vecb are two adjacent sides of parallelograsm then...

    Text Solution

    |

  7. A parallelogram is constructed on 3veca+vecb and veca-4vecb, where |ve...

    Text Solution

    |

  8. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  9. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  10. Let the position vectors of the points Pa n dQ be 4 hat i+ hat j+lam...

    Text Solution

    |

  11. A vector of magnitude sqrt2 coplanar with the vectors veca=hati+hatj+2...

    Text Solution

    |

  12. Let P be a point interior to the acute triangle A B Cdot If P A+P B...

    Text Solution

    |

  13. G is the centroid of triangle ABC and A1 and B1 are the midpoints of s...

    Text Solution

    |

  14. Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2...

    Text Solution

    |

  15. If veca and vecb are any two vectors of magnitudes 1and 2. respectivel...

    Text Solution

    |

  16. If veca and vecb are any two vectors of magnitude 2 and 3 respective...

    Text Solution

    |

  17. veca, vecb and vecc are unit vecrtors such that |veca + vecb+ 3vecc|=4...

    Text Solution

    |

  18. If the vector product of a constant vector vec O A with a variable ...

    Text Solution

    |

  19. Let vecu, vecv and vecw be such that |vecu|=1,|vecv|=2 and |vecw|=3 if...

    Text Solution

    |

  20. If the two adjacent sides of two rectangles are reprresented by vector...

    Text Solution

    |