Home
Class 11
MATHS
If vectors veca and vecb are two adjacen...

If vectors `veca and vecb` are two adjacent sides of parallelograsm then the vector representing the altitude of the parallelogram which is perpendicular to `veca` is (A) `vecb+(vecbxxveca)/(|veca|^2)` (B) `(veca.vecb)/(vecb|^2)` (C) `vecb-(vecb.veca)/(|veca|)^2)` (D) `(vecaxx(vecbxxveca))/(vecb|^20`

A

`vecb+(vecbxxveca)/(|veca|^(2))`

B

`(veca.vecb)/(|vecb|^(2))`

C

`vecb-(vecb.veca)/(|veca|^(2))veca`

D

`(vecaxx(vecbxxveca))/(|vecb|^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector representing the altitude of a parallelogram that is perpendicular to vector \(\vec{a}\), given that \(\vec{a}\) and \(\vec{b}\) are two adjacent sides of the parallelogram. ### Step-by-Step Solution: 1. **Understand the Geometry**: - We have a parallelogram with adjacent sides represented by vectors \(\vec{a}\) and \(\vec{b}\). - We need to find the altitude from point \(B\) to line \(OA\) (which is along vector \(\vec{a}\)). 2. **Define the Altitude**: - Let \(D\) be the foot of the altitude from point \(B\) to line \(OA\). - The position vector of point \(D\) can be expressed as \(D = T \vec{a}\), where \(T\) is some scalar multiple. 3. **Express the Vector \(DB\)**: - The vector \(DB\) can be expressed as: \[ \vec{DB} = \vec{B} - \vec{D} = \vec{b} - T \vec{a} \] 4. **Condition for Perpendicularity**: - For the altitude \(DB\) to be perpendicular to \(OA\), the dot product must be zero: \[ \vec{DB} \cdot \vec{a} = 0 \] - Substituting for \(\vec{DB}\): \[ (\vec{b} - T \vec{a}) \cdot \vec{a} = 0 \] 5. **Expand the Dot Product**: - Expanding the dot product gives: \[ \vec{b} \cdot \vec{a} - T (\vec{a} \cdot \vec{a}) = 0 \] - Rearranging this equation, we find: \[ T = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \] 6. **Substituting Back to Find \(DB\)**: - Now substitute \(T\) back into the expression for \(\vec{DB}\): \[ \vec{DB} = \vec{b} - T \vec{a} = \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \] 7. **Final Expression for the Altitude**: - Thus, the altitude vector \(DB\) is given by: \[ \vec{DB} = \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \] - This matches with option (C): \[ \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \] ### Conclusion: The vector representing the altitude of the parallelogram which is perpendicular to \(\vec{a}\) is: \[ \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \]

To solve the problem, we need to find the vector representing the altitude of a parallelogram that is perpendicular to vector \(\vec{a}\), given that \(\vec{a}\) and \(\vec{b}\) are two adjacent sides of the parallelogram. ### Step-by-Step Solution: 1. **Understand the Geometry**: - We have a parallelogram with adjacent sides represented by vectors \(\vec{a}\) and \(\vec{b}\). - We need to find the altitude from point \(B\) to line \(OA\) (which is along vector \(\vec{a}\)). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

The resolved part of the vector veca along the vector vecb is veclamda and that perpendicular to vecb is vecmu . Then (A) veclamda=((veca.vecb).veca)/veca^2 (B) veclamda=((veca.vecb).vecb)/vecb^2 (C) vecmu=((vecb.vecb)veca-(veca.vecb)vecb)/vecb^2 (D) vecmu=(vecbxx(vecaxxvecb))/vecb^2

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

Prove that (vecaxxvecb)^(2)= |(veca.veca" "veca.vecb),(veca.vecb" "vecb.vecb)|

The vector (veca-vecb)xx(veca+vecb) is equal to (A) 1/2 (vecaxxvecb) (B) vecaxxvecb (C) 2(veca+vecb) (D) 2(vecaxxvecb)

The vectors veca and vecb are not perpendicular and vecac and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb))vecb (B) vecb+(vecb.vecc)/(veca.vecb))vecc (C) vecc-(veca.vecc)/(veca.vecb))vecb (D) vecb-(vecb.vecc)/(veca.vecb))vecc

The vectors veca and vecb are not perpendicular and vecc and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb)vecb (B) vecb+(vecb.vecc)/(veca.vecb)vecc (C) vecc-(veca.vecc)/(veca.vecb)vecb (D) vecb-(vecb.vecc)/(veca.vecb)vecc

If veca and vecb be two non collinear vectors such that veca=vecc+vecd , where vecc is parallel to vecb and vecd is perpendicular to vecb obtain expression for vecc and vecd in terms of veca and vecb as: vecd= veca- ((veca.vecb)vecb)/b^2,vecc= ((veca.vecb)vecb)/b^2

If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vecc) is equal to (a) |veca|^(2)(vecb.vecc) (b) |vecb|^(2)(veca .vecc) (c) |vecc|^(2)(veca.vecb) (d) none of these

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. The units vectors orthogonal to the vector - hat i + 2hat j + 2hat k ...

    Text Solution

    |

  2. The value of x for which the angle between veca = 2x^(2) hati + 4x h...

    Text Solution

    |

  3. If vectors veca and vecb are two adjacent sides of parallelograsm then...

    Text Solution

    |

  4. A parallelogram is constructed on 3veca+vecb and veca-4vecb, where |ve...

    Text Solution

    |

  5. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  6. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  7. Let the position vectors of the points Pa n dQ be 4 hat i+ hat j+lam...

    Text Solution

    |

  8. A vector of magnitude sqrt2 coplanar with the vectors veca=hati+hatj+2...

    Text Solution

    |

  9. Let P be a point interior to the acute triangle A B Cdot If P A+P B...

    Text Solution

    |

  10. G is the centroid of triangle ABC and A1 and B1 are the midpoints of s...

    Text Solution

    |

  11. Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2...

    Text Solution

    |

  12. If veca and vecb are any two vectors of magnitudes 1and 2. respectivel...

    Text Solution

    |

  13. If veca and vecb are any two vectors of magnitude 2 and 3 respective...

    Text Solution

    |

  14. veca, vecb and vecc are unit vecrtors such that |veca + vecb+ 3vecc|=4...

    Text Solution

    |

  15. If the vector product of a constant vector vec O A with a variable ...

    Text Solution

    |

  16. Let vecu, vecv and vecw be such that |vecu|=1,|vecv|=2 and |vecw|=3 if...

    Text Solution

    |

  17. If the two adjacent sides of two rectangles are reprresented by vector...

    Text Solution

    |

  18. If vecalpha||(vecbxxvecgamma), then (vecalphaxxvecbeta).(vecalphaxxvec...

    Text Solution

    |

  19. The position vectors of points A,B and C are hati+hatj,hati + 5hatj -h...

    Text Solution

    |

  20. Given three vectors vec a , vec b ,a n d vec c two of which are non-c...

    Text Solution

    |