Home
Class 11
MATHS
A parallelogram is constructed on 3veca+...

A parallelogram is constructed on `3veca+vecb and veca-4vecb, where |veca|=6 and |vecb|=8` and `veca and vecb` are anti parallel then the length of the longer diagonal is (A) 40 (B) 64 (C) 32 (D) 48

A

40

B

64

C

32

D

48

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the length of the longer diagonal of the parallelogram constructed on the vectors \( \vec{u} = 3\vec{a} + \vec{b} \) and \( \vec{v} = \vec{a} - 4\vec{b} \). We are given that \( |\vec{a}| = 6 \) and \( |\vec{b}| = 8 \), and that \( \vec{a} \) and \( \vec{b} \) are anti-parallel. ### Step-by-Step Solution: 1. **Identify the Vectors**: \[ \vec{u} = 3\vec{a} + \vec{b} \] \[ \vec{v} = \vec{a} - 4\vec{b} \] 2. **Calculate the Diagonal Vectors**: The diagonals of the parallelogram can be found using the formula: \[ \text{Diagonal 1} = \vec{u} + \vec{v} \] \[ \text{Diagonal 2} = \vec{u} - \vec{v} \] Let's calculate \( \vec{u} + \vec{v} \): \[ \vec{u} + \vec{v} = (3\vec{a} + \vec{b}) + (\vec{a} - 4\vec{b}) = 4\vec{a} - 3\vec{b} \] 3. **Find the Magnitude of the Diagonal**: We need to calculate the magnitude of \( 4\vec{a} - 3\vec{b} \): \[ |4\vec{a} - 3\vec{b}|^2 = |4\vec{a}|^2 + |-3\vec{b}|^2 - 2(4\vec{a}) \cdot (-3\vec{b}) \] Using the magnitudes: \[ |4\vec{a}|^2 = 16|\vec{a}|^2 = 16 \times 36 = 576 \] \[ |-3\vec{b}|^2 = 9|\vec{b}|^2 = 9 \times 64 = 576 \] Now, calculate the dot product \( (4\vec{a}) \cdot (-3\vec{b}) \): Since \( \vec{a} \) and \( \vec{b} \) are anti-parallel, \( \cos \theta = -1 \): \[ (4\vec{a}) \cdot (-3\vec{b}) = -12|\vec{a}||\vec{b}| = -12 \times 6 \times 8 = -576 \] Now substituting back: \[ |4\vec{a} - 3\vec{b}|^2 = 576 + 576 + 2 \times 576 = 576 + 576 + 1152 = 2304 \] 4. **Calculate the Magnitude**: \[ |4\vec{a} - 3\vec{b}| = \sqrt{2304} = 48 \] Thus, the length of the longer diagonal is \( \boxed{48} \).

To solve the problem, we need to find the length of the longer diagonal of the parallelogram constructed on the vectors \( \vec{u} = 3\vec{a} + \vec{b} \) and \( \vec{v} = \vec{a} - 4\vec{b} \). We are given that \( |\vec{a}| = 6 \) and \( |\vec{b}| = 8 \), and that \( \vec{a} \) and \( \vec{b} \) are anti-parallel. ### Step-by-Step Solution: 1. **Identify the Vectors**: \[ \vec{u} = 3\vec{a} + \vec{b} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If |veca+vecb|=|veca-vecb| show that veca_|_vecb .

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

Find |veca-vecb| , if two vector veca and vecb are such that |veca|=4,|vecb|=5 and veca.vecb=3

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

Find |veca| and |vecb| if (veca+vecb).(veca-vecb)=8 and |veca|=8|vecb|.

Find |veca|and |vecb|, if (veca+vecb).(veca-vecb) =8 and |veca|=8|vecb|

Find |veca| and |vecb| if (veca+vecb).(veca-vecb)=8 and |veca|=8|vecb| .

If |veca|=5 , |veca-vecb| = 8 and |veca +vecb|=10 then find |vecb|

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

The value of [(veca-vecb, vecb-vecc, vecc-veca)] , where |veca|=1, |vecb|=5, |vecc|=3 , is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. The value of x for which the angle between veca = 2x^(2) hati + 4x h...

    Text Solution

    |

  2. If vectors veca and vecb are two adjacent sides of parallelograsm then...

    Text Solution

    |

  3. A parallelogram is constructed on 3veca+vecb and veca-4vecb, where |ve...

    Text Solution

    |

  4. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  5. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  6. Let the position vectors of the points Pa n dQ be 4 hat i+ hat j+lam...

    Text Solution

    |

  7. A vector of magnitude sqrt2 coplanar with the vectors veca=hati+hatj+2...

    Text Solution

    |

  8. Let P be a point interior to the acute triangle A B Cdot If P A+P B...

    Text Solution

    |

  9. G is the centroid of triangle ABC and A1 and B1 are the midpoints of s...

    Text Solution

    |

  10. Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2...

    Text Solution

    |

  11. If veca and vecb are any two vectors of magnitudes 1and 2. respectivel...

    Text Solution

    |

  12. If veca and vecb are any two vectors of magnitude 2 and 3 respective...

    Text Solution

    |

  13. veca, vecb and vecc are unit vecrtors such that |veca + vecb+ 3vecc|=4...

    Text Solution

    |

  14. If the vector product of a constant vector vec O A with a variable ...

    Text Solution

    |

  15. Let vecu, vecv and vecw be such that |vecu|=1,|vecv|=2 and |vecw|=3 if...

    Text Solution

    |

  16. If the two adjacent sides of two rectangles are reprresented by vector...

    Text Solution

    |

  17. If vecalpha||(vecbxxvecgamma), then (vecalphaxxvecbeta).(vecalphaxxvec...

    Text Solution

    |

  18. The position vectors of points A,B and C are hati+hatj,hati + 5hatj -h...

    Text Solution

    |

  19. Given three vectors vec a , vec b ,a n d vec c two of which are non-c...

    Text Solution

    |

  20. If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3ve...

    Text Solution

    |