Home
Class 11
MATHS
If veca and vecb are any two vectors of ...

If `veca and vecb` are any two vectors of magnitudes 1and 2. respectively, and `(1-3veca.vecb)^(2)+|2veca+vecb+3(vecaxxvecb)|^(2)=47` then the angle between `veca and vecb ` is

A

`pi//3`

B

`pi-cos^(-1) (1//4)`

C

`(2pi)/3`

D

`cos^(-1) (1//4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given information about the vectors \( \vec{a} \) and \( \vec{b} \). ### Step 1: Write down the given equation We have the equation: \[ (1 - 3 \vec{a} \cdot \vec{b})^2 + |2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2 = 47 \] ### Step 2: Use the magnitudes of the vectors Given that the magnitude of \( \vec{a} \) is 1 and the magnitude of \( \vec{b} \) is 2, we can write: \[ |\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 2 \] ### Step 3: Expand the first term The first term can be expanded as: \[ (1 - 3 \vec{a} \cdot \vec{b})^2 = 1 - 6 \vec{a} \cdot \vec{b} + 9 (\vec{a} \cdot \vec{b})^2 \] ### Step 4: Expand the second term For the second term, we need to calculate \( |2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2 \): \[ |2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2 = |2\vec{a} + \vec{b}|^2 + |3(\vec{a} \times \vec{b})|^2 + 2(2\vec{a} + \vec{b}) \cdot (3(\vec{a} \times \vec{b})) \] ### Step 5: Calculate \( |2\vec{a} + \vec{b}|^2 \) Using the formula for the magnitude: \[ |2\vec{a} + \vec{b}|^2 = |2\vec{a}|^2 + |\vec{b}|^2 + 2(2\vec{a}) \cdot \vec{b} = 4 + 4 + 4 \vec{a} \cdot \vec{b} = 8 + 4 \vec{a} \cdot \vec{b} \] ### Step 6: Calculate \( |3(\vec{a} \times \vec{b})|^2 \) Using the property of cross products: \[ |3(\vec{a} \times \vec{b})|^2 = 9 |\vec{a} \times \vec{b}|^2 = 9 |\vec{a}|^2 |\vec{b}|^2 \sin^2 \theta = 9 \cdot 1 \cdot 4 \sin^2 \theta = 36 \sin^2 \theta \] ### Step 7: Substitute back into the equation Now substituting everything back into the equation: \[ 1 - 6 \vec{a} \cdot \vec{b} + 9 (\vec{a} \cdot \vec{b})^2 + 8 + 4 \vec{a} \cdot \vec{b} + 36 \sin^2 \theta + 2(2\vec{a} + \vec{b}) \cdot (3(\vec{a} \times \vec{b})) = 47 \] ### Step 8: Simplify the equation Combine like terms and simplify: \[ 9 (\vec{a} \cdot \vec{b})^2 - 2 \vec{a} \cdot \vec{b} + 36 \sin^2 \theta + 9 = 47 \] This simplifies to: \[ 9 (\vec{a} \cdot \vec{b})^2 - 2 \vec{a} \cdot \vec{b} + 36 \sin^2 \theta - 38 = 0 \] ### Step 9: Use the identity \( \sin^2 \theta + \cos^2 \theta = 1 \) We can express \( \sin^2 \theta \) in terms of \( \cos^2 \theta \): \[ \sin^2 \theta = 1 - \cos^2 \theta \] ### Step 10: Solve for \( \cos \theta \) Substituting back and solving the quadratic equation will give us: \[ \cos \theta = -\frac{1}{2} \] ### Step 11: Find the angle The angle \( \theta \) corresponding to \( \cos \theta = -\frac{1}{2} \) is: \[ \theta = \frac{2\pi}{3} \text{ radians} \] ### Final Answer The angle between \( \vec{a} \) and \( \vec{b} \) is \( \frac{2\pi}{3} \) radians. ---

To solve the problem step by step, we will use the given information about the vectors \( \vec{a} \) and \( \vec{b} \). ### Step 1: Write down the given equation We have the equation: \[ (1 - 3 \vec{a} \cdot \vec{b})^2 + |2\vec{a} + \vec{b} + 3(\vec{a} \times \vec{b})|^2 = 47 \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

If veca and vecb are any two vectors of magnitude 2 and 3 respectively such that |2(vecaxxvecb)|+|3(veca.vecb)|=k then the maximum value of k is

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

IF |veca|=sqrt(3), |vecb|=2 and |veca-vecb|=3 find the angle between veca and vecb .

If vecA*vecB=|vecAxxvecB| . Then angle between vecA and vecB is

Find the angle between two veca and vecb with magnitudes 1 and 2 respectively and when veca.vecb=1 .

If veca and vecb are two vectors of magnitude 1 inclined at 120^(@) , then find the angle between vecb and vecb-veca .

If |veca|=2,|vecb|=7 and (vecaxxvecb)=3hati+2hatj+6hatk find the angle between veca and vecb

A magnitude of vector vecA,vecB and vecC are respectively 12, 5 and 13 units and vecA+vecB=vecC then the angle between vecA and vecB is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. G is the centroid of triangle ABC and A1 and B1 are the midpoints of s...

    Text Solution

    |

  2. Points veca , vecb vecc and vecd are coplanar and (sin alpha)veca + (2...

    Text Solution

    |

  3. If veca and vecb are any two vectors of magnitudes 1and 2. respectivel...

    Text Solution

    |

  4. If veca and vecb are any two vectors of magnitude 2 and 3 respective...

    Text Solution

    |

  5. veca, vecb and vecc are unit vecrtors such that |veca + vecb+ 3vecc|=4...

    Text Solution

    |

  6. If the vector product of a constant vector vec O A with a variable ...

    Text Solution

    |

  7. Let vecu, vecv and vecw be such that |vecu|=1,|vecv|=2 and |vecw|=3 if...

    Text Solution

    |

  8. If the two adjacent sides of two rectangles are reprresented by vector...

    Text Solution

    |

  9. If vecalpha||(vecbxxvecgamma), then (vecalphaxxvecbeta).(vecalphaxxvec...

    Text Solution

    |

  10. The position vectors of points A,B and C are hati+hatj,hati + 5hatj -h...

    Text Solution

    |

  11. Given three vectors vec a , vec b ,a n d vec c two of which are non-c...

    Text Solution

    |

  12. If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3ve...

    Text Solution

    |

  13. If in a right-angled triangle ABC, the hypotenuse AB = p , then vec(A...

    Text Solution

    |

  14. Resolved part of vector veca and along vector vecb " is " veca1 and th...

    Text Solution

    |

  15. Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hat...

    Text Solution

    |

  16. If P is any arbitrary point on the circumcirlce of the equllateral ...

    Text Solution

    |

  17. If vecr and vecs are non-zero constant vectors and the scalar b is cho...

    Text Solution

    |

  18. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  19. Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb...

    Text Solution

    |

  20. The position vectors of the vertices A, B and C of a triangle are thre...

    Text Solution

    |