Home
Class 11
MATHS
Let vecu, vecv and vecw be such that |ve...

Let `vecu, vecv and vecw` be such that `|vecu|=1,|vecv|=2 and |vecw|=3` if the projection of `vecv " along " vecu` is equal to that of `vecw` along `vecu` and vectors `vecv and vecw` are perpendicular to each other then `|vecu-vecv + vecw|` equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of vector projections and the given conditions. ### Step 1: Understand the Given Information We have three vectors: - \( \vec{u} \) such that \( |\vec{u}| = 1 \) - \( \vec{v} \) such that \( |\vec{v}| = 2 \) - \( \vec{w} \) such that \( |\vec{w}| = 3 \) We know that the projection of \( \vec{v} \) along \( \vec{u} \) is equal to the projection of \( \vec{w} \) along \( \vec{u} \), and that \( \vec{v} \) and \( \vec{w} \) are perpendicular to each other. ### Step 2: Write the Projection Formulas The projection of \( \vec{v} \) along \( \vec{u} \) is given by: \[ \text{proj}_{\vec{u}} \vec{v} = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}|} \vec{u} \] Since \( |\vec{u}| = 1 \), this simplifies to: \[ \text{proj}_{\vec{u}} \vec{v} = \vec{u} \cdot \vec{v} \cdot \vec{u} \] Similarly, the projection of \( \vec{w} \) along \( \vec{u} \) is: \[ \text{proj}_{\vec{u}} \vec{w} = \vec{u} \cdot \vec{w} \cdot \vec{u} \] ### Step 3: Set the Projections Equal Given that the projections are equal: \[ \vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w} \] ### Step 4: Use the Perpendicular Condition Since \( \vec{v} \) and \( \vec{w} \) are perpendicular, we have: \[ \vec{v} \cdot \vec{w} = 0 \] ### Step 5: Calculate \( |\vec{u} - \vec{v} + \vec{w}| \) We need to find \( |\vec{u} - \vec{v} + \vec{w}| \). We can use the formula for the magnitude of a vector: \[ |\vec{u} - \vec{v} + \vec{w}|^2 = |\vec{u}|^2 + |\vec{v}|^2 + |\vec{w}|^2 - 2(\vec{u} \cdot \vec{v}) + 2(\vec{u} \cdot \vec{w}) - 2(\vec{v} \cdot \vec{w}) \] ### Step 6: Substitute the Magnitudes Substituting the magnitudes: - \( |\vec{u}|^2 = 1^2 = 1 \) - \( |\vec{v}|^2 = 2^2 = 4 \) - \( |\vec{w}|^2 = 3^2 = 9 \) Now substituting into the equation: \[ |\vec{u} - \vec{v} + \vec{w}|^2 = 1 + 4 + 9 - 2(\vec{u} \cdot \vec{v}) + 2(\vec{u} \cdot \vec{w}) - 0 \] ### Step 7: Simplify the Expression Since \( \vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w} \), let \( k = \vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w} \): \[ |\vec{u} - \vec{v} + \vec{w}|^2 = 14 - 2k + 2k = 14 \] ### Step 8: Final Calculation Thus: \[ |\vec{u} - \vec{v} + \vec{w}| = \sqrt{14} \] ### Final Answer \[ |\vec{u} - \vec{v} + \vec{w}| = \sqrt{14} \]

To solve the problem step by step, we will use the properties of vector projections and the given conditions. ### Step 1: Understand the Given Information We have three vectors: - \( \vec{u} \) such that \( |\vec{u}| = 1 \) - \( \vec{v} \) such that \( |\vec{v}| = 2 \) - \( \vec{w} \) such that \( |\vec{w}| = 3 \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let vecu,vecv,vecw be such that |vecu|=1,|vecv|=2,|vecw|3 . If the projection of vecv along vecu is equal to that of vecw along vecv,vecw are perpendicular to each other then |vecu-vecv+vecw| equals (A) 2 (B) sqrt(7) (C) sqrt(14) (D) 14

A unit vector perpendicular to vector vecV=(3,-4) is

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw .vecu is

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw .vecu is

Let vector vec(V)=(2,3) and vector vec(U)=(6,-4) . Are vecU and vecV perpendicular?

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw .vecu is (a) 47 (b) -25 (c) 0 (d) 25

Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw and vecw xx vecu = vecv . Find the value of [vecu vecv vecw ]

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

If vecu=veca-vecb , vecv=veca+vecb and |veca|=|vecb|=2 , then |vecuxxvecv| is equal to

If vecu, vecv, vecw are three vectors such that [vecu vecv vecw]=1 , then 3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. veca, vecb and vecc are unit vecrtors such that |veca + vecb+ 3vecc|=4...

    Text Solution

    |

  2. If the vector product of a constant vector vec O A with a variable ...

    Text Solution

    |

  3. Let vecu, vecv and vecw be such that |vecu|=1,|vecv|=2 and |vecw|=3 if...

    Text Solution

    |

  4. If the two adjacent sides of two rectangles are reprresented by vector...

    Text Solution

    |

  5. If vecalpha||(vecbxxvecgamma), then (vecalphaxxvecbeta).(vecalphaxxvec...

    Text Solution

    |

  6. The position vectors of points A,B and C are hati+hatj,hati + 5hatj -h...

    Text Solution

    |

  7. Given three vectors vec a , vec b ,a n d vec c two of which are non-c...

    Text Solution

    |

  8. If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3ve...

    Text Solution

    |

  9. If in a right-angled triangle ABC, the hypotenuse AB = p , then vec(A...

    Text Solution

    |

  10. Resolved part of vector veca and along vector vecb " is " veca1 and th...

    Text Solution

    |

  11. Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hat...

    Text Solution

    |

  12. If P is any arbitrary point on the circumcirlce of the equllateral ...

    Text Solution

    |

  13. If vecr and vecs are non-zero constant vectors and the scalar b is cho...

    Text Solution

    |

  14. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  15. Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb...

    Text Solution

    |

  16. The position vectors of the vertices A, B and C of a triangle are thre...

    Text Solution

    |

  17. If a is real constant A ,Ba n dC are variable angles and sqrt(a^2-4)ta...

    Text Solution

    |

  18. The vertex A triangle A B C is on the line vec r= hat i+ hat j+lambda...

    Text Solution

    |

  19. A non-zero vecto veca is such tha its projections along vectors (hati ...

    Text Solution

    |

  20. Position vector hat k is rotated about the origin by angle 135^0 i...

    Text Solution

    |