Home
Class 11
MATHS
If vecalpha||(vecbxxvecgamma), then (vec...

If `vecalpha||(vecbxxvecgamma), then (vecalphaxxvecbeta).(vecalphaxxvecgamma)=` (A) `|vecalpha|^2(vecbeta.vecgamma)` (B) `|vecbeta|^2(vecgamma.vecalpha)` (C) `|vecgamma|^2(vecalpha.vecbeta)` (D) `|vecalpha||vecbeta||vecgamma|`

A

`|vecalpha|^(2)(vecbeta.vecgamma)`

B

`|vecbeta|^(2)(vecgamma.vecalpha)`

C

`|vecgamma|^(2)(vecalpha.vecbeta)`

D

`|vecalpha||vecbeta||vecgamma|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given condition that \(\vec{\alpha} \parallel (\vec{\beta} \times \vec{\gamma})\). This means that \(\vec{\alpha}\) is parallel to the vector resulting from the cross product of \(\vec{\beta}\) and \(\vec{\gamma}\). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: Since \(\vec{\alpha} \parallel (\vec{\beta} \times \vec{\gamma})\), we can express this as: \[ \vec{\alpha} = k (\vec{\beta} \times \vec{\gamma}) \] for some scalar \(k\). 2. **Cross Product**: We need to find \((\vec{\alpha} \times \vec{\beta}) \cdot (\vec{\alpha} \times \vec{\gamma})\). 3. **Using the Vector Triple Product Identity**: We can use the vector triple product identity: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] Applying this, we can rewrite \(\vec{\alpha} \times \vec{\beta}\) and \(\vec{\alpha} \times \vec{\gamma}\). 4. **Calculating the Dot Product**: We can express the dot product as: \[ (\vec{\alpha} \times \vec{\beta}) \cdot (\vec{\alpha} \times \vec{\gamma}) = |\vec{\alpha}|^2 (\vec{\beta} \cdot \vec{\gamma}) - (\vec{\alpha} \cdot \vec{\beta})(\vec{\alpha} \cdot \vec{\gamma}) \] 5. **Using Perpendicularity**: Since \(\vec{\alpha}\) is perpendicular to both \(\vec{\beta}\) and \(\vec{\gamma}\) (as derived from the condition), we have: \[ \vec{\alpha} \cdot \vec{\beta} = 0 \quad \text{and} \quad \vec{\alpha} \cdot \vec{\gamma} = 0 \] Therefore, the terms involving the dot products become zero: \[ (\vec{\alpha} \cdot \vec{\beta})(\vec{\alpha} \cdot \vec{\gamma}) = 0 \] 6. **Final Expression**: Thus, we simplify to: \[ (\vec{\alpha} \times \vec{\beta}) \cdot (\vec{\alpha} \times \vec{\gamma}) = |\vec{\alpha}|^2 (\vec{\beta} \cdot \vec{\gamma}) \] 7. **Conclusion**: Therefore, the final answer is: \[ (\vec{\alpha} \times \vec{\beta}) \cdot (\vec{\alpha} \times \vec{\gamma}) = |\vec{\alpha}|^2 (\vec{\beta} \cdot \vec{\gamma}) \] This matches option (A).

To solve the problem, we start with the given condition that \(\vec{\alpha} \parallel (\vec{\beta} \times \vec{\gamma})\). This means that \(\vec{\alpha}\) is parallel to the vector resulting from the cross product of \(\vec{\beta}\) and \(\vec{\gamma}\). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: Since \(\vec{\alpha} \parallel (\vec{\beta} \times \vec{\gamma})\), we can express this as: \[ \vec{\alpha} = k (\vec{\beta} \times \vec{\gamma}) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

if vecalpha||( vecbetaxx vecgamma) , then ( vecalphaxxbeta).(vecalphaxx vecgamma) equals to a. | vecalpha|^2( vecbeta.vecgamma) b. | vecbeta|^2( vecgamma. vecalpha) c. | vecgamma|^2( vecalpha. vecbeta) d. | vecalpha|| vecbeta|| vecgamma|

Prove that vec R+([ vec Rdot( vecbetaxx( vecbetaxx vecalpha))] vecalpha)/(| vecalphaxx vecbeta|^2)+([ vec Rdot( vecalphaxx( vecalphaxx vecbeta))] vecbeta)/(| vecalphaxx vecbeta|^2)=([ vec R vecalpha vecbeta]( vecalphaxx vecbeta))/(| vecalphaxx vecbeta|^2)

If veca and vecb be any two mutually perpendiculr vectors and vecalpha be any vector then |vecaxxvecb|^2 ((veca.vecalpha)veca)/(|veca|^2)+|vecaxxvecb|^2 ((vecb.vecalpha)vecb)/(|vecb|^2)-|vecaxxvecb|^2vecalpha= (A) |(veca.vecb)vecalpha|(vecaxxvecb) (B) [veca vecb vecalpha](vecbxxveca) (C) [veca vecb vecalpha](vecaxxvecb) (D) none of these

Findthe value of vecalphaxx(vecbetaxxvecgamma) , where, vecalpha=2veci-10vecj+2veck, vecbeta=3veci+vecj+2veck, vecgamma =2veci+vecj+3veck

If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vecdelta=b vecalpha, vecalphaa n d vecdelta are non-colliner, then vecalpha+ vecbeta+ vecgamma+ vecdelta equals a. a vecalpha b. b vecdelta c. 0 d. (a+b) vecgamma

If veca,vecb,vecc are mutually perpendicular vector and veca=alpha(vecaxxvecb)+beta(vecbxxvecc)+gamma(veccxxveca) and [veca vecb vecc]=1 then vecalpha+vecbeta+vecgamma= (A) |veca|^2 (B) -|veca|^2 (C) 0 (D) none of these

If veca is any then |veca.hati|^2+|veca.hatj|^2+|veca.hatk|^2= (A) |veca|^2 (B) |veca| (C) 2|vecalpha| (D) none of these

If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=hati+hatj+hatk , then (vec(alpha)xxvec(beta)).(vec(alpha)xxvec(gamma)) is equal to

If V is the volume of the parallelepiped having three coterminous edges as veca,vecb and vecc , then the volume of the parallelepiped having three coterminous edges as vecalpha = (veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc , vecbeta=(vecb.veca)veca+(vecb.vecb)+(vecb.vecc)vecc and veclambda=(vecc.veca)veca+(vecc.vecb)vecb+(vecc.vecc)vecc is

If a(vecalphaxxvecbeta)=b(vecbetaxxvecgamma)+c(vecgammaxxvecalpha)=vec0 and at least one of a,b and c is non zero then vectors vecalpha, vecbeta, vecgamma are (A) parallel (B) coplanar (C) mutually perpendicular (D) none of these

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Let vecu, vecv and vecw be such that |vecu|=1,|vecv|=2 and |vecw|=3 if...

    Text Solution

    |

  2. If the two adjacent sides of two rectangles are reprresented by vector...

    Text Solution

    |

  3. If vecalpha||(vecbxxvecgamma), then (vecalphaxxvecbeta).(vecalphaxxvec...

    Text Solution

    |

  4. The position vectors of points A,B and C are hati+hatj,hati + 5hatj -h...

    Text Solution

    |

  5. Given three vectors vec a , vec b ,a n d vec c two of which are non-c...

    Text Solution

    |

  6. If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3ve...

    Text Solution

    |

  7. If in a right-angled triangle ABC, the hypotenuse AB = p , then vec(A...

    Text Solution

    |

  8. Resolved part of vector veca and along vector vecb " is " veca1 and th...

    Text Solution

    |

  9. Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hat...

    Text Solution

    |

  10. If P is any arbitrary point on the circumcirlce of the equllateral ...

    Text Solution

    |

  11. If vecr and vecs are non-zero constant vectors and the scalar b is cho...

    Text Solution

    |

  12. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  13. Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb...

    Text Solution

    |

  14. The position vectors of the vertices A, B and C of a triangle are thre...

    Text Solution

    |

  15. If a is real constant A ,Ba n dC are variable angles and sqrt(a^2-4)ta...

    Text Solution

    |

  16. The vertex A triangle A B C is on the line vec r= hat i+ hat j+lambda...

    Text Solution

    |

  17. A non-zero vecto veca is such tha its projections along vectors (hati ...

    Text Solution

    |

  18. Position vector hat k is rotated about the origin by angle 135^0 i...

    Text Solution

    |

  19. In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d ...

    Text Solution

    |

  20. In AB, DE and GF are parallel to each other and AD, BG and EF ar para...

    Text Solution

    |