Home
Class 11
MATHS
If in a right-angled triangle ABC, the h...

If in a right-angled triangle ABC, the hypotenuse AB = p , then `vec(AB).vec(AC)+vec(BC).vec(BA)+vec(CA).vec(CB)`is equal to

A

`2p^(2)`

B

`p^(2)/2`

C

`p^(2)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
c

we have
` vec(AB). Vec(AC) + vec(BC) + vec(BA) + vec(CA) . Vec(CB)`
` AB ( AC cos theta + BC sin theta)`
` AB ( AC cos theta + BC sin theta)`
`AB (((AC)^(2))/(AB)) + ((BC)^(2))/(AB)`
` AC^(2) + BC^(2) = AB^(2) + p^(2)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If in a right-angled triangle A B C , the hypotenuse A B=p ,then vec(AB).vec(AC)+ vec(BC). vec(BA)+ vec(CA).vec(CB) is equal to 2p^2 b. (p^2)/2 c. p^2 d. none of these

If in a right-angled triangle A B C , the hypotenuse A B=p ,t h e n vec A BdotA C+ vec B Cdot vec B A+ vec C Adot vec C B is equal to 2p^2 b. (p^2)/2 c. p^2 d. none of these

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If I is the centre of a circle inscribed in a triangle ABC , then |vec(BC)|vec(IA)+|vec(CA)|vec(IB)+|vec(AB)|vec(IC) is

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

In triangle ABC (Figure), which of the following is not true: (A) vec(AB)+ vec(BC)+ vec(CA)=vec0 (B) vec(AB)+ vec(BC)- vec(AC) =vec0 (C) vec(AB)+ vec(BC)- vec(CA)=vec0 (D) vec(AB)+ vec(CB)+ vec(CA)=vec0

Assertion: If I is the incentre of /_\ABC, then |vec(BC)| vec(IA) +|vec(CA)| vec(IB) +|vec(AB)| vec(IC) =0 Reason: If O is the origin, then the position vector of centroid of /_\ABC is (vec(OA)+vec(OB)+vec(OC))/3

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Given three vectors vec a , vec b ,a n d vec c two of which are non-c...

    Text Solution

    |

  2. If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3ve...

    Text Solution

    |

  3. If in a right-angled triangle ABC, the hypotenuse AB = p , then vec(A...

    Text Solution

    |

  4. Resolved part of vector veca and along vector vecb " is " veca1 and th...

    Text Solution

    |

  5. Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hat...

    Text Solution

    |

  6. If P is any arbitrary point on the circumcirlce of the equllateral ...

    Text Solution

    |

  7. If vecr and vecs are non-zero constant vectors and the scalar b is cho...

    Text Solution

    |

  8. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  9. Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb...

    Text Solution

    |

  10. The position vectors of the vertices A, B and C of a triangle are thre...

    Text Solution

    |

  11. If a is real constant A ,Ba n dC are variable angles and sqrt(a^2-4)ta...

    Text Solution

    |

  12. The vertex A triangle A B C is on the line vec r= hat i+ hat j+lambda...

    Text Solution

    |

  13. A non-zero vecto veca is such tha its projections along vectors (hati ...

    Text Solution

    |

  14. Position vector hat k is rotated about the origin by angle 135^0 i...

    Text Solution

    |

  15. In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d ...

    Text Solution

    |

  16. In AB, DE and GF are parallel to each other and AD, BG and EF ar para...

    Text Solution

    |

  17. Vectors hata in the plane of vecb = 2 hati +hatj and vecc = hati-hatj ...

    Text Solution

    |

  18. Let A B C D be a tetrahedron such that the edges A B ,A Ca n dA D ar...

    Text Solution

    |

  19. Let vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot] deno...

    Text Solution

    |

  20. If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vec...

    Text Solution

    |