Home
Class 11
MATHS
Position vector hat k is rotated about ...

Position vector ` hat k` is rotated about the origin by angle `135^0` in such a way that the plane made by it bisects the angel between ` hat ia n d hatjdot` Then its new position is `+-( hat i)/(sqrt(2))+-( hat j)/(sqrt(2))` b. `+-( hat i)/2+-( hat j)/2-( hat k)/(sqrt(2))` c. `( hat i)/(sqrt(2))-( hat k)/(sqrt(2))` d. none of these

A

`+-hati/sqrt2+-hatj/sqrt2`

B

`+-hati/2+-hatj/2-hatk/sqrt2`

C

`hati/sqrt2-hatk/sqrt2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the rotation of the position vector \( \hat{k} \) about the origin by an angle of \( 135^\circ \) and find its new position vector. ### Step 1: Understand the Rotation The position vector \( \hat{k} \) is rotated about the origin by \( 135^\circ \). The angle \( 135^\circ \) can be expressed in radians as \( \frac{3\pi}{4} \). ### Step 2: Calculate the Cosine of the Angle We know that: \[ \cos(135^\circ) = -\frac{1}{\sqrt{2}} \] ### Step 3: Define the New Position Vector Let the new position vector after rotation be represented as \( \mathbf{r} \). We can express \( \mathbf{r} \) in terms of its components along \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \): \[ \mathbf{r} = \lambda \hat{k} + \mu_1 \hat{i} + \mu_2 \hat{j} \] where \( \lambda \) is the component along \( \hat{k} \), and \( \mu_1 \) and \( \mu_2 \) are the components along \( \hat{i} \) and \( \hat{j} \) respectively. ### Step 4: Use the Dot Product From the rotation, we have: \[ \mathbf{r} \cdot \hat{k} = \lambda \] Given that the rotation is about \( \hat{k} \), we also have: \[ \mathbf{r} \cdot \hat{k} = -\frac{1}{\sqrt{2}} \] Thus, we find: \[ \lambda = -\frac{1}{\sqrt{2}} \] ### Step 5: Find the Magnitude of the New Position Vector The magnitude of \( \mathbf{r} \) should remain 1 (since we are rotating a unit vector): \[ |\mathbf{r}| = \sqrt{\lambda^2 + \mu_1^2 + \mu_2^2} = 1 \] Substituting \( \lambda \): \[ \sqrt{\left(-\frac{1}{\sqrt{2}}\right)^2 + \mu_1^2 + \mu_2^2} = 1 \] This simplifies to: \[ \sqrt{\frac{1}{2} + \mu_1^2 + \mu_2^2} = 1 \] Squaring both sides gives: \[ \frac{1}{2} + \mu_1^2 + \mu_2^2 = 1 \] Thus: \[ \mu_1^2 + \mu_2^2 = \frac{1}{2} \] ### Step 6: Choose Components for \( \mu_1 \) and \( \mu_2 \) Assuming \( \mu_1 = \mu_2 = \mu \): \[ 2\mu^2 = \frac{1}{2} \implies \mu^2 = \frac{1}{4} \implies \mu = \pm \frac{1}{2} \] ### Step 7: Substitute Back into the Position Vector Substituting \( \lambda \) and \( \mu \) back into the expression for \( \mathbf{r} \): \[ \mathbf{r} = -\frac{1}{\sqrt{2}} \hat{k} + \frac{1}{2} \hat{i} + \frac{1}{2} \hat{j} \] This can be expressed as: \[ \mathbf{r} = \pm \frac{1}{2} \hat{i} \pm \frac{1}{2} \hat{j} - \frac{1}{\sqrt{2}} \hat{k} \] ### Final Answer Thus, the new position vector after rotation is: \[ \mathbf{r} = \pm \frac{1}{2} \hat{i} \pm \frac{1}{2} \hat{j} - \frac{1}{\sqrt{2}} \hat{k} \] ### Conclusion The correct option is: **b. \( \pm \frac{\hat{i}}{2} \pm \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}} \)**

To solve the problem step by step, we will analyze the rotation of the position vector \( \hat{k} \) about the origin by an angle of \( 135^\circ \) and find its new position vector. ### Step 1: Understand the Rotation The position vector \( \hat{k} \) is rotated about the origin by \( 135^\circ \). The angle \( 135^\circ \) can be expressed in radians as \( \frac{3\pi}{4} \). ### Step 2: Calculate the Cosine of the Angle We know that: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Vector vec a in the plane of vec b=2 hat i+ hat ja n d vec c= hat i- hat j+ hat k is such that it is equally inclined to vec ba n d vec d where vec d= hat j+2 hat kdot The value of vec a is a. ( hat i+ hat j+ hat k)/(sqrt(2)) b. ( hat i- hat j+ hat k)/(sqrt(3)) c. (2 hat i+ hat j)/(sqrt(5)) d. (2 hat i+ hat j)/(sqrt(5))

The unit vector which is orthogonal to the vector 3 hat j+2 hat j+6 hat k and is coplanar with vectors 2 hat i+ hat j+ hat ka n d hat i- hat j+ hat k is (2 hat i-6 hat j+ hat k)/(sqrt(41)) b. (2 hat i-3 hat j)/(sqrt(13)) c. (3 hat j- hat k)/(sqrt(10)) d. (4 hat i+3 hat j-3 hat k)/(sqrt(34))

Let vec a= hat i- hat j , vec b= hat j- hat ka n d vec c= hat k- hat i. If vec d is a unit vector such that vec a.vec d=0=[ vec b vec c vec d], then d equals a. +-( hat i+ hat j-2 hat k)/(sqrt(6)) b. +-( hat i+ hat j- hat k)/(sqrt(3)) c. +-( hat i+ hat j+ hat k)/(sqrt(3)) d. +- hat k

If side vec A B of an equilateral trangle A B C lying in the x-y plane 3 hat i , then side vec C B can be a. -3/2( hat i-sqrt(3) hat j) b. -3/2( hat i-sqrt(3) hat j) c. -3/2( hat i+sqrt(3) hat j) d. 3/2( hat i+sqrt(3) hat j)

A non-zero vector vec a is such that its projections along vectors ( hat i+ hat j)/(sqrt(2)),(- hat i+ hat j)/(sqrt(2)) and hat k are equal, then unit vector along vec a is a. (sqrt(2) hat j- hat k)/(sqrt(3)) b. ( hat j-sqrt(2) hat k)/(sqrt(3)) c. (sqrt(2))/(sqrt(3)) hat j+( hat k)/(sqrt(3)) d. ( hat j- hat k)/(sqrt(2))

A unit vector parallel to the intersection of the planes vec r. \ ( hat i- hat j+ hat k)=5 \ a n d \ vec r. \ (2 hat i+ hat j-3 hat k)=4 a. (2 hat i+5 hat j-3 hat k)/(sqrt(38)) b. (-2 hat i+5 hat j-3 hat k)/(sqrt(38)) c. (2 hat i+5 hat j-3 hat k)/(sqrt(38)) d. (-2 hat i-5 hat j-3 hat k)/(sqrt(38))

Compute the magnitude of the following vectors: veca= hat i+ hat j+ hat k ; vecb=2 hat i-7 hat j-3 hat k ; vecc=1/(sqrt(3)) hat i+1/(sqrt(3)) hat j-1/(sqrt(3)) hat k

A unit vector perpendicular to both hat i+ hat j\ a n d\ hat j+ hat k is hat i- hat j+ hat k b. hat i+ hat j+ hat k c. 1/(sqrt(3))( hat i+ hat j+ hat k) d. 1/(sqrt(3))( hat i- hat j+ hat k)

The distance of the line vec r=2 hat i-2 hat j+3 hat k+lambda( hat i- hat j+4 hat k) from the plane vec rdot(( hat i+5 hat j+ hat k))=5, is 5/(3sqrt(3)) b. (10)/(3sqrt(3)) c. (25)/(3sqrt(3)) d. none of these

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. The vertex A triangle A B C is on the line vec r= hat i+ hat j+lambda...

    Text Solution

    |

  2. A non-zero vecto veca is such tha its projections along vectors (hati ...

    Text Solution

    |

  3. Position vector hat k is rotated about the origin by angle 135^0 i...

    Text Solution

    |

  4. In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d ...

    Text Solution

    |

  5. In AB, DE and GF are parallel to each other and AD, BG and EF ar para...

    Text Solution

    |

  6. Vectors hata in the plane of vecb = 2 hati +hatj and vecc = hati-hatj ...

    Text Solution

    |

  7. Let A B C D be a tetrahedron such that the edges A B ,A Ca n dA D ar...

    Text Solution

    |

  8. Let vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot] deno...

    Text Solution

    |

  9. If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vec...

    Text Solution

    |

  10. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  11. If vecd=vecaxxvecb+vecbxxvecc+veccxxveca is a on zero vector and |(vec...

    Text Solution

    |

  12. If |veca|=2 and |vecb|=3 and veca.vecb=0, " then " (vecaxx(vecaxx(veca...

    Text Solution

    |

  13. If two diagonals of one of its faces are 6hati + 6 hatk and 4 hatj + ...

    Text Solution

    |

  14. The volume of a tetrahedron fomed by the coterminus edges veca , vecb ...

    Text Solution

    |

  15. If veca ,vecb and vecc are three mutually orthogonal unit vectors , th...

    Text Solution

    |

  16. vector vecc are perpendicular to vectors veca= (2,-3,1) and vecb= (1,...

    Text Solution

    |

  17. Given veca=xhati+yhatj+2hatk,vecb=hati-hatj+hatk , vecc=hati+2hatj, ve...

    Text Solution

    |

  18. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(2)hatj+b(3)hatk and vecc=c(...

    Text Solution

    |

  19. Let vecr, veca, vecb and vecc be four non -zero vectors such that vecr...

    Text Solution

    |

  20. If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= la...

    Text Solution

    |