Home
Class 11
MATHS
Let vecf(t)=[t] hat i+(t-[t]) hat j+[t+...

Let ` vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot]` denotes the greatest integer function. Then the vectors `vecf(5/4)` and `vecf(t)` ,`0 < t < 1` are `(a)`parallel to each other `(b)`perpendicular to each other `(c)`inclined at `cos^(-1)(2/(sqrt(7(1-t^2))))` `(d)`inclined at `cos^(-1)((8+t)/(9*sqrt(1+t^2)))`

A

parallel to each other

B

perpendicular to each other

C

inclined at `cos^(-1) 2/(sqrt7(1-t^(2))`

D

inclined at `cos ^(-1) (8+t)/(9sqrt(1+t^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the vectors given in the question and determine the relationship between `vecf(5/4)` and `vecf(t)` for `0 < t < 1`. ### Step 1: Calculate `vecf(5/4)` Given the function: \[ \vecf(t) = [t] \hat{i} + (t - [t]) \hat{j} + [t + 1] \hat{k} \] where `[t]` denotes the greatest integer function. For \( t = \frac{5}{4} \): - \([t] = [\frac{5}{4}] = 1\) - \(t - [t] = \frac{5}{4} - 1 = \frac{1}{4}\) - \([t + 1] = [\frac{5}{4} + 1] = [\frac{9}{4}] = 2\) Thus, we have: \[ \vecf\left(\frac{5}{4}\right) = 1 \hat{i} + \frac{1}{4} \hat{j} + 2 \hat{k} = \hat{i} + \frac{1}{4} \hat{j} + 2 \hat{k} \] ### Step 2: Calculate `vecf(t)` for `0 < t < 1` For \( 0 < t < 1 \): - \([t] = 0\) - \(t - [t] = t - 0 = t\) - \([t + 1] = [t + 1] = 1\) Thus, we have: \[ \vecf(t) = 0 \hat{i} + t \hat{j} + 1 \hat{k} = t \hat{j} + \hat{k} \] ### Step 3: Find the dot product of `vecf(5/4)` and `vecf(t)` Now we need to find the dot product: \[ \vecf\left(\frac{5}{4}\right) \cdot \vecf(t) = \left(1 \hat{i} + \frac{1}{4} \hat{j} + 2 \hat{k}\right) \cdot \left(0 \hat{i} + t \hat{j} + 1 \hat{k}\right) \] Calculating the dot product: \[ = 1 \cdot 0 + \frac{1}{4} \cdot t + 2 \cdot 1 = \frac{t}{4} + 2 \] ### Step 4: Calculate the magnitudes of the vectors Magnitude of \(\vecf\left(\frac{5}{4}\right)\): \[ \|\vecf\left(\frac{5}{4}\right)\| = \sqrt{1^2 + \left(\frac{1}{4}\right)^2 + 2^2} = \sqrt{1 + \frac{1}{16} + 4} = \sqrt{\frac{16 + 1 + 64}{16}} = \sqrt{\frac{81}{16}} = \frac{9}{4} \] Magnitude of \(\vecf(t)\): \[ \|\vecf(t)\| = \sqrt{0^2 + t^2 + 1^2} = \sqrt{t^2 + 1} \] ### Step 5: Calculate the cosine of the angle between the vectors Using the formula for the cosine of the angle: \[ \cos \theta = \frac{\vecf\left(\frac{5}{4}\right) \cdot \vecf(t)}{\|\vecf\left(\frac{5}{4}\right)\| \|\vecf(t)\|} \] Substituting the values: \[ \cos \theta = \frac{\frac{t}{4} + 2}{\frac{9}{4} \cdot \sqrt{t^2 + 1}} \] Simplifying: \[ = \frac{t + 8}{9 \sqrt{t^2 + 1}} \] ### Step 6: Find the angle Thus, the angle between the vectors is: \[ \theta = \cos^{-1}\left(\frac{t + 8}{9 \sqrt{t^2 + 1}}\right) \] ### Conclusion After checking the options, we find that the correct answer corresponds to option (d): \[ \text{(d) inclined at } \cos^{-1}\left(\frac{8 + t}{9 \sqrt{1 + t^2}}\right) \]

To solve the problem, we need to analyze the vectors given in the question and determine the relationship between `vecf(5/4)` and `vecf(t)` for `0 < t < 1`. ### Step 1: Calculate `vecf(5/4)` Given the function: \[ \vecf(t) = [t] \hat{i} + (t - [t]) \hat{j} + [t + 1] \hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot] denotes the greatest integer function. Then the vectors vecf(5/4)a n df(t),0lttlt1 are(a) parallel to each other(b) perpendicular(c) inclined at cos^(-1)2 (sqrt(7(1-t^2))) (d)inclined at cos^(-1)((8+t)/(9sqrt (1+t^2))) ;

int_0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer function and x in R^+ , is equal to

Find the value of t which satisfies (t-[|sin x|])! = 3!5!7! w h e r e[dot] denotes the greatest integer function.

The position of a particle is given by vec r= 3.0 t hat i - 2.0 t^2 hat j + 4.0 hat k m , where (t) in seconds and the coefficients have the proper units for vec r to be in metres. (a) Find the vec v and vec a of the particle ? (b) What is the magnitude and direction of velocity of the particle at t= 2 s ?

Let vec A(t) = f_1(t) hat i + f_2(t) hat j and vec B(t) = g(t)hat i+g_2(t) hat j,t in [0,1],f_1,f_2,g_1 g_2 are continuous functions. If vec A(t) and vec B(t) are non-zero vectors for all t and vec A(0) = 2hat i + 3hat j,vec A(1) = 6hat i + 2hat j, vec B(0) = 3hat i + 2hat i and vec B(1) = 2hat i + 6hat j Then,show that vec A(t) and vec B(t) are parallel for some t .

The position of of a particle is given by vec r =3.0 t hat I + 2.0 t^(2) hat j+ 5.0 hat k wher (t) in seconds and the coefficients have the proper units . Find the velocity and acceleration of the particle in magnitude and direction at time t=3.0 s

Let vec P R=3 hat i+ hat j-2 hat ka n d vec S Q= hat i-3 hat j-4 hat k determine diagonals of a parallelogram P Q R S ,a n d vec P T= hat i+2 hat j+3 hat k be another vector. Then the volume of the parallelepiped determine by the vectors vec P T , vec P Q and vec P S is 5 b. 20 c. 10 d. 30

Writhe the value of ( vec adot hat i) hat i+( vec adot hat j) hat j+( vec adot hat k) hat k\ w h e r e\ vec a is any vector.

The position vector of a particle is given by vec(r)=1.2 t hat(i)+0.9 t^(2) hat(j)-0.6(t^(3)-1)hat(k) where t is the time in seconds from the start of motion and where vec(r) is expressed in meters. For the condition when t=4 second, determine the power (P=vec(F).vec(v)) in watts produced by the force vec(F)=(60hat(i)-25hat(j)-40hat(k)) N which is acting on the particle.

A particle move so that its position verctor varies with time as vec r=A cos omega t hat i + A sin omega t hat j . Find the a. initial velocity of the particle, b. angle between the position vector and velocity of the particle at any time, and c. speed at any instant.

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Vectors hata in the plane of vecb = 2 hati +hatj and vecc = hati-hatj ...

    Text Solution

    |

  2. Let A B C D be a tetrahedron such that the edges A B ,A Ca n dA D ar...

    Text Solution

    |

  3. Let vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot] deno...

    Text Solution

    |

  4. If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vec...

    Text Solution

    |

  5. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  6. If vecd=vecaxxvecb+vecbxxvecc+veccxxveca is a on zero vector and |(vec...

    Text Solution

    |

  7. If |veca|=2 and |vecb|=3 and veca.vecb=0, " then " (vecaxx(vecaxx(veca...

    Text Solution

    |

  8. If two diagonals of one of its faces are 6hati + 6 hatk and 4 hatj + ...

    Text Solution

    |

  9. The volume of a tetrahedron fomed by the coterminus edges veca , vecb ...

    Text Solution

    |

  10. If veca ,vecb and vecc are three mutually orthogonal unit vectors , th...

    Text Solution

    |

  11. vector vecc are perpendicular to vectors veca= (2,-3,1) and vecb= (1,...

    Text Solution

    |

  12. Given veca=xhati+yhatj+2hatk,vecb=hati-hatj+hatk , vecc=hati+2hatj, ve...

    Text Solution

    |

  13. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(2)hatj+b(3)hatk and vecc=c(...

    Text Solution

    |

  14. Let vecr, veca, vecb and vecc be four non -zero vectors such that vecr...

    Text Solution

    |

  15. If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= la...

    Text Solution

    |

  16. If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxve...

    Text Solution

    |

  17. value of [vecaxxvecbvecaxxvecc vecd] is always equal to

    Text Solution

    |

  18. Let hata and hatb be mutually perpendicular unit vectors. Then for an...

    Text Solution

    |

  19. Let veca and vecb be unit vectors that are perpendicular to each other...

    Text Solution

    |

  20. veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. V...

    Text Solution

    |