Home
Class 11
MATHS
If vecd=vecaxxvecb+vecbxxvecc+veccxxveca...

If `vecd=vecaxxvecb+vecbxxvecc+veccxxveca` is a on zero vector and `|(vecd.vecc)(vecaxxvecb)+(vecd.veca)(vecbxxvecc)+(vecd.vecb)(veccxxveca)|=0` then (A) `|veca|+|vecb|+|vecc|=|vecd|` (B) `|veca|=|vecb|=|vecc|` (C) `veca,vecb,vecc` are coplanar (D) `veca+vecc=vec(2b)`

A

`|veca|=|vecb|=|vecc|`

B

`|veca|+|vecb|+|vecc|=|vecd|`

C

`veca, vecb and vecc` are coplanar

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given information step by step. ### Step 1: Understanding the Given Expression We start with the expression for the vector **d**: \[ \vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \] We know that **d** is a non-zero vector. ### Step 2: Analyzing the Dot Products Next, we need to analyze the dot products given in the problem: \[ |\vec{d} \cdot \vec{c} (\vec{a} \times \vec{b}) + \vec{d} \cdot \vec{a} (\vec{b} \times \vec{c}) + \vec{d} \cdot \vec{b} (\vec{c} \times \vec{a})| = 0 \] This implies that the entire expression evaluates to zero. ### Step 3: Simplifying the Dot Products We can simplify each dot product: - \(\vec{d} \cdot \vec{a} = \vec{a} \times \vec{b} \cdot \vec{a} + \vec{b} \times \vec{c} \cdot \vec{a} + \vec{c} \times \vec{a} \cdot \vec{a} = 0 + \vec{b} \times \vec{c} \cdot \vec{a} + 0 = \vec{b} \times \vec{c} \cdot \vec{a}\) - \(\vec{d} \cdot \vec{b} = \vec{a} \times \vec{b} \cdot \vec{b} + \vec{b} \times \vec{c} \cdot \vec{b} + \vec{c} \times \vec{a} \cdot \vec{b} = 0 + 0 + \vec{c} \times \vec{a} \cdot \vec{b} = \vec{c} \times \vec{a} \cdot \vec{b}\) - \(\vec{d} \cdot \vec{c} = \vec{a} \times \vec{b} \cdot \vec{c} + \vec{b} \times \vec{c} \cdot \vec{c} + \vec{c} \times \vec{a} \cdot \vec{c} = \vec{a} \times \vec{b} \cdot \vec{c} + 0 + 0 = \vec{a} \times \vec{b} \cdot \vec{c}\) ### Step 4: Substituting Back into the Expression Substituting these results back into the expression gives us: \[ |\vec{a} \times \vec{b} \cdot \vec{c} (\vec{a} \times \vec{b}) + \vec{b} \times \vec{c} \cdot \vec{a} (\vec{b} \times \vec{c}) + \vec{c} \times \vec{a} \cdot \vec{b} (\vec{c} \times \vec{a})| = 0 \] ### Step 5: Factoring Out Common Terms We can factor out the common term \(\vec{a} \times \vec{b} \cdot \vec{c}\): \[ |\vec{a} \times \vec{b} \cdot \vec{c} \cdot (\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})| = 0 \] Since \(\vec{d}\) is a non-zero vector, the term \(\vec{a} \times \vec{b} \cdot \vec{c}\) must equal zero. ### Step 6: Conclusion The condition \(\vec{a} \times \vec{b} \cdot \vec{c} = 0\) implies that the vectors \(\vec{a}, \vec{b}, \vec{c}\) are coplanar. Thus, the correct option is: **(C) \(\vec{a}, \vec{b}, \vec{c}\) are coplanar.**

To solve the problem, we need to analyze the given information step by step. ### Step 1: Understanding the Given Expression We start with the expression for the vector **d**: \[ \vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \] We know that **d** is a non-zero vector. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc) = -2[vecb vecc vecd] veca

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

If vecA, vecB, vecC are non-coplanar vectors then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecAxxvecB)=

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc and veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

For three vectors veca+vecb+vecc=0 , check if (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vec...

    Text Solution

    |

  2. The three vectors hat i+hat j,hat j+hat k, hat k+hat i taken two at a ...

    Text Solution

    |

  3. If vecd=vecaxxvecb+vecbxxvecc+veccxxveca is a on zero vector and |(vec...

    Text Solution

    |

  4. If |veca|=2 and |vecb|=3 and veca.vecb=0, " then " (vecaxx(vecaxx(veca...

    Text Solution

    |

  5. If two diagonals of one of its faces are 6hati + 6 hatk and 4 hatj + ...

    Text Solution

    |

  6. The volume of a tetrahedron fomed by the coterminus edges veca , vecb ...

    Text Solution

    |

  7. If veca ,vecb and vecc are three mutually orthogonal unit vectors , th...

    Text Solution

    |

  8. vector vecc are perpendicular to vectors veca= (2,-3,1) and vecb= (1,...

    Text Solution

    |

  9. Given veca=xhati+yhatj+2hatk,vecb=hati-hatj+hatk , vecc=hati+2hatj, ve...

    Text Solution

    |

  10. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(2)hatj+b(3)hatk and vecc=c(...

    Text Solution

    |

  11. Let vecr, veca, vecb and vecc be four non -zero vectors such that vecr...

    Text Solution

    |

  12. If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= la...

    Text Solution

    |

  13. If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxve...

    Text Solution

    |

  14. value of [vecaxxvecbvecaxxvecc vecd] is always equal to

    Text Solution

    |

  15. Let hata and hatb be mutually perpendicular unit vectors. Then for an...

    Text Solution

    |

  16. Let veca and vecb be unit vectors that are perpendicular to each other...

    Text Solution

    |

  17. veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. V...

    Text Solution

    |

  18. If vecb and vecc are unit vectors, then for any arbitary vector veca,...

    Text Solution

    |

  19. If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

    Text Solution

    |

  20. If a(vecalphaxxvecbeta)=b(vecbetaxxvecgamma)+c(vecgammaxxvecalpha)=vec...

    Text Solution

    |