Home
Class 11
MATHS
Let hata and hatb be mutually perpendic...

Let `hata and hatb ` be mutually perpendicular unit vectors. Then for ant arbitrary `vecr`.

A

`vecr= (vecr.hata)hata+(vecr.hatb)hatb+(vecr.(vecaxxhatb)) (hataxxhatb)`

B

`vecr= (vecr.hata)-(vecr.hatb)hatb-(vecr.(vecaxxhatb)) (hataxxhatb)`

C

`vecr= (vecr.hata)hata-(vecr.hatb)hatb-(vecr.(vecaxxhatb)) (hataxxhatb)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express an arbitrary vector \(\vec{r}\) in terms of the mutually perpendicular unit vectors \(\hat{a}\) and \(\hat{b}\). Let's go through the steps systematically. ### Step-by-Step Solution: 1. **Understanding the Given Information**: - We have two mutually perpendicular unit vectors \(\hat{a}\) and \(\hat{b}\). - We need to express an arbitrary vector \(\vec{r}\) in terms of these unit vectors. 2. **Expressing the Vector**: - Since \(\hat{a}\) and \(\hat{b}\) are unit vectors, we can express any vector \(\vec{r}\) in the form: \[ \vec{r} = x_1 \hat{a} + x_2 \hat{b} + x_3 (\hat{a} \times \hat{b}) \] - Here, \(x_1\), \(x_2\), and \(x_3\) are the scalar components of \(\vec{r}\) along the directions of \(\hat{a}\), \(\hat{b}\), and \(\hat{a} \times \hat{b}\) respectively. 3. **Dot Product with \(\hat{a}\)**: - Taking the dot product of \(\vec{r}\) with \(\hat{a}\): \[ \vec{r} \cdot \hat{a} = (x_1 \hat{a} + x_2 \hat{b} + x_3 (\hat{a} \times \hat{b})) \cdot \hat{a} \] - This simplifies to: \[ \vec{r} \cdot \hat{a} = x_1 + x_2 (\hat{b} \cdot \hat{a}) + x_3 ((\hat{a} \times \hat{b}) \cdot \hat{a}) \] - Since \(\hat{a} \cdot \hat{b} = 0\) and \((\hat{a} \times \hat{b}) \cdot \hat{a} = 0\), we have: \[ \vec{r} \cdot \hat{a} = x_1 \] 4. **Dot Product with \(\hat{b}\)**: - Similarly, taking the dot product of \(\vec{r}\) with \(\hat{b}\): \[ \vec{r} \cdot \hat{b} = (x_1 \hat{a} + x_2 \hat{b} + x_3 (\hat{a} \times \hat{b})) \cdot \hat{b} \] - This simplifies to: \[ \vec{r} \cdot \hat{b} = x_1 (\hat{a} \cdot \hat{b}) + x_2 + x_3 ((\hat{a} \times \hat{b}) \cdot \hat{b}) \] - Again, since \(\hat{a} \cdot \hat{b} = 0\) and \((\hat{a} \times \hat{b}) \cdot \hat{b} = 0\), we have: \[ \vec{r} \cdot \hat{b} = x_2 \] 5. **Cross Product with \(\hat{a} \times \hat{b}\)**: - Now, taking the cross product of \(\vec{r}\) with \(\hat{a} \times \hat{b}\): \[ \vec{r} \times (\hat{a} \times \hat{b}) = (x_1 \hat{a} + x_2 \hat{b} + x_3 (\hat{a} \times \hat{b})) \times (\hat{a} \times \hat{b}) \] - Using the vector triple product identity: \[ \vec{r} \times (\hat{a} \times \hat{b}) = (\vec{r} \cdot \hat{b}) \hat{a} - (\vec{r} \cdot \hat{a}) \hat{b} \] - This gives us: \[ \vec{r} \times (\hat{a} \times \hat{b}) = x_2 \hat{a} - x_1 \hat{b} \] 6. **Final Expression**: - We can now express \(\vec{r}\) in terms of its components: \[ \vec{r} = (\vec{r} \cdot \hat{a}) \hat{a} + (\vec{r} \cdot \hat{b}) \hat{b} + (\vec{r} \cdot (\hat{a} \times \hat{b})) (\hat{a} \times \hat{b}) \] - Therefore, the final expression for \(\vec{r}\) is: \[ \vec{r} = \vec{r} \cdot \hat{a} \hat{a} + \vec{r} \cdot \hat{b} \hat{b} + \vec{r} \cdot (\hat{a} \times \hat{b}) (\hat{a} \times \hat{b}) \] ### Conclusion: The expression for any arbitrary vector \(\vec{r}\) in terms of the mutually perpendicular unit vectors \(\hat{a}\) and \(\hat{b}\) is: \[ \vec{r} = (\vec{r} \cdot \hat{a}) \hat{a} + (\vec{r} \cdot \hat{b}) \hat{b} + (\vec{r} \cdot (\hat{a} \times \hat{b})) (\hat{a} \times \hat{b}) \]

To solve the problem, we need to express an arbitrary vector \(\vec{r}\) in terms of the mutually perpendicular unit vectors \(\hat{a}\) and \(\hat{b}\). Let's go through the steps systematically. ### Step-by-Step Solution: 1. **Understanding the Given Information**: - We have two mutually perpendicular unit vectors \(\hat{a}\) and \(\hat{b}\). - We need to express an arbitrary vector \(\vec{r}\) in terms of these unit vectors. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let bara,barb and barc are three mutually perpendicular unit vectors and a unit vector barr satisfying the equation (barb - barc) times (barr times bara)+(barc - bara) times (barr times barb)+(bara-barb) times (barr -barc)=0 then barr is

If veca and vecb are mutually perpendicular unit vectors, vecr is a vector satisfying vecr.veca =0, vecr.vecb=1 and (vecr veca vecb)=1 , then vecr is:

Assertion: Thevalue of expression hati.(hatjxxhatk)+hatj.(hatkxxhati)+hatk.(hatixxhatj) is equal to 3, Reason: If hata, hatb, hatc are mutually perpendicular unit vectors, then [hata hatb hatc]=1 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

if veca, vecb and vecc are there mutually perpendicular unit vectors and veca ia a unit vector then find the value of |2veca+ vecb + vecc |^2

If vec a\ a n d\ vec b are mutually perpendicular unit vectors, write the value of | vec a+ vec b|dot

If veca,vecb and vecc are three mutually perpendicular unit vectors and vecd is a unit vector which makes equal angle with veca,vecb and vecc , then find the value of |veca+vecb+vecc+vecd|^(2) .

If vec a ,\ vec b ,\ vec c are three mutually perpendicular unit vectors, then prove that | vec a+ vec b+ vec c|=sqrt(3)

If veca,vecb and vecc are three mutually perpendicular unit vectors then (vecr.veca)veca+(vecr.vecb)vecb+(vecr.vecc)vecc= (A) ([veca vecb vecc]vecr)/2 (B) vecr (C) 2[veca vecb vecc] (D) none of these

If veca , vecb , vecc are three mutually perpendicular unit vectors, then prove that ∣ ​ veca + vecb + vecc | ​ = sqrt3 ​

veca and vecb are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to veca, vecb and veca xxvecb is equal to

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxve...

    Text Solution

    |

  2. value of [vecaxxvecbvecaxxvecc vecd] is always equal to

    Text Solution

    |

  3. Let hata and hatb be mutually perpendicular unit vectors. Then for an...

    Text Solution

    |

  4. Let veca and vecb be unit vectors that are perpendicular to each other...

    Text Solution

    |

  5. veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. V...

    Text Solution

    |

  6. If vecb and vecc are unit vectors, then for any arbitary vector veca,...

    Text Solution

    |

  7. If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

    Text Solution

    |

  8. If a(vecalphaxxvecbeta)=b(vecbetaxxvecgamma)+c(vecgammaxxvecalpha)=vec...

    Text Solution

    |

  9. if (vecaxxvecb)xx(vecbxxvecc)=vecb, " where " veca, vecb and vecc are ...

    Text Solution

    |

  10. If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and...

    Text Solution

    |

  11. A vector of magnitude 10 along the normal to the curve 3x^2+8x y+2y...

    Text Solution

    |

  12. If veca and vecb are two unit vectors inclined at an angle pi/3 then {...

    Text Solution

    |

  13. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  14. If veca+vecb ,vecc are any three non- coplanar vectors then the equa...

    Text Solution

    |

  15. Sholve the simultasneous vector equations for vecx and vecy: vecx+vecc...

    Text Solution

    |

  16. The condition for equations vecrxxveca = vecb and vecr xx vecc = vecd ...

    Text Solution

    |

  17. If veca=2hati + hatj + hatk, vecb=hati + 2hatj + 2hatk then [veca vecb...

    Text Solution

    |

  18. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  19. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  20. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |