Home
Class 11
MATHS
veca and vecb are two vectors such that ...

`veca and vecb` are two vectors such that `|veca|=1 ,|vecb|=4 and veca.` Vecb `=2 . If `vecc` = (2vecaxx vecb) - 3vecb` then find angle between `vecb and vecc`.

A

A`pi/3`

B

B`pi/6`

C

C`(3pi)/4`

D

D`(5pi)/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between the vectors \(\vec{b}\) and \(\vec{c}\), given the information about the vectors \(\vec{a}\) and \(\vec{b}\). ### Step-by-Step Solution: 1. **Given Information**: - \(|\vec{a}| = 1\) - \(|\vec{b}| = 4\) - \(\vec{a} \cdot \vec{b} = 2\) 2. **Using the Dot Product**: The dot product of two vectors can be expressed as: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). Substituting the known values: \[ 2 = 1 \cdot 4 \cdot \cos \theta \] Simplifying gives: \[ 2 = 4 \cos \theta \implies \cos \theta = \frac{1}{2} \] Therefore, \(\theta = 60^\circ\). 3. **Finding \(\vec{c}\)**: The vector \(\vec{c}\) is defined as: \[ \vec{c} = 2(\vec{a} \times \vec{b}) - 3\vec{b} \] 4. **Calculating \(|\vec{c}|\)**: First, we need to find \(|\vec{a} \times \vec{b}|\): \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] We already know \(|\vec{a}| = 1\), \(|\vec{b}| = 4\), and \(\sin 60^\circ = \frac{\sqrt{3}}{2}\): \[ |\vec{a} \times \vec{b}| = 1 \cdot 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3} \] 5. **Substituting into \(\vec{c}\)**: Now, substituting back into the expression for \(\vec{c}\): \[ |\vec{c}| = |2(\vec{a} \times \vec{b}) - 3\vec{b}| \] We can find the magnitude of \(\vec{c}\) using the formula for the magnitude of a vector subtraction: \[ |\vec{c}|^2 = |2(\vec{a} \times \vec{b})|^2 + |-3\vec{b}|^2 - 2|2(\vec{a} \times \vec{b})||-3\vec{b}|\cos \phi \] where \(\phi\) is the angle between \(\vec{a} \times \vec{b}\) and \(\vec{b}\). Since \(\vec{a} \times \vec{b}\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\), \(\phi = 90^\circ\) and \(\cos \phi = 0\): \[ |\vec{c}|^2 = |2(2\sqrt{3})|^2 + |-3(4)|^2 \] \[ = 4(3) + 9(16) = 12 + 144 = 156 \] Therefore, \(|\vec{c}| = \sqrt{156} = 2\sqrt{39}\). 6. **Finding the Angle Between \(\vec{b}\) and \(\vec{c}\)**: Now, we can find the angle \(\alpha\) between \(\vec{b}\) and \(\vec{c}\) using the dot product: \[ \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos \alpha \] We already know \(|\vec{b}| = 4\) and \(|\vec{c}| = 2\sqrt{39}\). Now we need to find \(\vec{b} \cdot \vec{c}\): \[ \vec{b} \cdot \vec{c} = 2(\vec{a} \cdot \vec{b}) - 3|\vec{b}|^2 \] \[ = 2(2) - 3(16) = 4 - 48 = -44 \] 7. **Substituting Values**: Now substituting into the dot product equation: \[ -44 = 4 \cdot 2\sqrt{39} \cos \alpha \] \[ -44 = 8\sqrt{39} \cos \alpha \implies \cos \alpha = \frac{-44}{8\sqrt{39}} = \frac{-11}{2\sqrt{39}} \] 8. **Finding \(\alpha\)**: The angle \(\alpha\) can be found using the inverse cosine function: \[ \alpha = \cos^{-1}\left(\frac{-11}{2\sqrt{39}}\right) \] ### Final Answer: The angle between \(\vec{b}\) and \(\vec{c}\) is given by: \[ \alpha = \cos^{-1}\left(\frac{-11}{2\sqrt{39}}\right) \]

To solve the problem, we need to find the angle between the vectors \(\vec{b}\) and \(\vec{c}\), given the information about the vectors \(\vec{a}\) and \(\vec{b}\). ### Step-by-Step Solution: 1. **Given Information**: - \(|\vec{a}| = 1\) - \(|\vec{b}| = 4\) - \(\vec{a} \cdot \vec{b} = 2\) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

If |veca|+|vecb|=|vecc|and veca+vecb=vecc then find the angle between veca and vecb .

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vecc|=5 and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12

let veca, vecb and vecc be three unit vectors such that veca xx (vecb xx vecc) =sqrt(3)/2 (vecb + vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is:

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Let hata and hatb be mutually perpendicular unit vectors. Then for an...

    Text Solution

    |

  2. Let veca and vecb be unit vectors that are perpendicular to each other...

    Text Solution

    |

  3. veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. V...

    Text Solution

    |

  4. If vecb and vecc are unit vectors, then for any arbitary vector veca,...

    Text Solution

    |

  5. If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

    Text Solution

    |

  6. If a(vecalphaxxvecbeta)=b(vecbetaxxvecgamma)+c(vecgammaxxvecalpha)=vec...

    Text Solution

    |

  7. if (vecaxxvecb)xx(vecbxxvecc)=vecb, " where " veca, vecb and vecc are ...

    Text Solution

    |

  8. If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and...

    Text Solution

    |

  9. A vector of magnitude 10 along the normal to the curve 3x^2+8x y+2y...

    Text Solution

    |

  10. If veca and vecb are two unit vectors inclined at an angle pi/3 then {...

    Text Solution

    |

  11. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  12. If veca+vecb ,vecc are any three non- coplanar vectors then the equa...

    Text Solution

    |

  13. Sholve the simultasneous vector equations for vecx and vecy: vecx+vecc...

    Text Solution

    |

  14. The condition for equations vecrxxveca = vecb and vecr xx vecc = vecd ...

    Text Solution

    |

  15. If veca=2hati + hatj + hatk, vecb=hati + 2hatj + 2hatk then [veca vecb...

    Text Solution

    |

  16. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  17. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  18. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  19. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  20. If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb...

    Text Solution

    |