Home
Class 11
MATHS
If a(vecalphaxxvecbeta)=b(vecbetaxxvecga...

If `a(vecalphaxxvecbeta)=b(vecbetaxxvecgamma)+c(vecgammaxxvecalpha)=vec0` and at least one of a,b and c is non zero then vectors `vecalpha, vecbeta, vecgamma` are (A) parallel (B) coplanar (C) mutually perpendicular (D) none of these

A

parallel

B

coplanar

C

mutually perpendicular

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ a(\vec{\alpha} \times \vec{\beta}) = b(\vec{\beta} \times \vec{\gamma}) + c(\vec{\gamma} \times \vec{\alpha}) = \vec{0} \] We need to analyze this equation to determine the relationship between the vectors \(\vec{\alpha}\), \(\vec{\beta}\), and \(\vec{\gamma}\). ### Step 1: Understanding the Equation The equation states that a linear combination of the cross products of the vectors equals the zero vector. This indicates that the vectors involved may be related in such a way that they lie in the same plane. ### Step 2: Taking the Dot Product with \(\vec{\gamma}\) We take the dot product of the entire equation with \(\vec{\gamma}\): \[ a(\vec{\alpha} \times \vec{\beta}) \cdot \vec{\gamma} + b(\vec{\beta} \times \vec{\gamma}) \cdot \vec{\gamma} + c(\vec{\gamma} \times \vec{\alpha}) \cdot \vec{\gamma} = 0 \] The term \(b(\vec{\beta} \times \vec{\gamma}) \cdot \vec{\gamma}\) becomes zero because the cross product of any vector with itself is zero. Thus, we simplify to: \[ a(\vec{\alpha} \times \vec{\beta}) \cdot \vec{\gamma} + c(\vec{\gamma} \times \vec{\alpha}) \cdot \vec{\gamma} = 0 \] ### Step 3: Further Simplifying The term \(c(\vec{\gamma} \times \vec{\alpha}) \cdot \vec{\gamma}\) also becomes zero for the same reason. Therefore, we have: \[ a(\vec{\alpha} \times \vec{\beta}) \cdot \vec{\gamma} = 0 \] This implies that either \(a = 0\) or \((\vec{\alpha} \times \vec{\beta}) \cdot \vec{\gamma} = 0\). ### Step 4: Taking the Dot Product with \(\vec{\beta}\) Next, we take the dot product of the original equation with \(\vec{\beta}\): \[ a(\vec{\alpha} \times \vec{\beta}) \cdot \vec{\beta} + b(\vec{\beta} \times \vec{\gamma}) \cdot \vec{\beta} + c(\vec{\gamma} \times \vec{\alpha}) \cdot \vec{\beta} = 0 \] Again, the term \(b(\vec{\beta} \times \vec{\gamma}) \cdot \vec{\beta}\) becomes zero. Thus, we simplify to: \[ c(\vec{\gamma} \times \vec{\alpha}) \cdot \vec{\beta} = 0 \] This implies that either \(c = 0\) or \((\vec{\gamma} \times \vec{\alpha}) \cdot \vec{\beta} = 0\). ### Step 5: Taking the Dot Product with \(\vec{\alpha}\) Finally, we take the dot product of the original equation with \(\vec{\alpha}\): \[ a(\vec{\alpha} \times \vec{\beta}) \cdot \vec{\alpha} + b(\vec{\beta} \times \vec{\gamma}) \cdot \vec{\alpha} + c(\vec{\gamma} \times \vec{\alpha}) \cdot \vec{\alpha} = 0 \] The term \(a(\vec{\alpha} \times \vec{\beta}) \cdot \vec{\alpha}\) becomes zero. Thus, we simplify to: \[ b(\vec{\beta} \times \vec{\gamma}) \cdot \vec{\alpha} = 0 \] This implies that either \(b = 0\) or \((\vec{\beta} \times \vec{\gamma}) \cdot \vec{\alpha} = 0\). ### Conclusion Since at least one of \(a\), \(b\), or \(c\) is non-zero, and we have derived conditions that lead to the conclusion that the scalar triple product \([\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 0\), we can conclude that the vectors \(\vec{\alpha}\), \(\vec{\beta}\), and \(\vec{\gamma}\) are coplanar. Thus, the answer is: **(B) coplanar.**

To solve the problem, we start with the given equation: \[ a(\vec{\alpha} \times \vec{\beta}) = b(\vec{\beta} \times \vec{\gamma}) + c(\vec{\gamma} \times \vec{\alpha}) = \vec{0} \] We need to analyze this equation to determine the relationship between the vectors \(\vec{\alpha}\), \(\vec{\beta}\), and \(\vec{\gamma}\). ### Step 1: Understanding the Equation The equation states that a linear combination of the cross products of the vectors equals the zero vector. This indicates that the vectors involved may be related in such a way that they lie in the same plane. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If a( vecalphaxx vecbeta)+b( vecbetaxx vecgamma)+c( vecgammaxx vecalpha)=0 and at least one of a ,ba n dc is nonzero, then vectors vecalpha, vecbetaa n d vecgamma are a. parallel b. coplanar c. mutually perpendicular d. none of these

If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vecdelta=b vecalpha, vecalphaa n d vecdelta are non-colliner, then vecalpha+ vecbeta+ vecgamma+ vecdelta equals a. a vecalpha b. b vecdelta c. 0 d. (a+b) vecgamma

If veca,vecb,vecc are mutually perpendicular vector and veca=alpha(vecaxxvecb)+beta(vecbxxvecc)+gamma(veccxxveca) and [veca vecb vecc]=1 then vecalpha+vecbeta+vecgamma= (A) |veca|^2 (B) -|veca|^2 (C) 0 (D) none of these

If vec a , vec b , vec c are mutually perpendicular unit vectors, find |2 vec a+ vec b+ vec c|dot

If a,b and c are non-coplanar vectors, prove that 3a-7b-4c, 3a-2b+c and a+b+2c are coplanar.

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.

If the vectors vec(a) + vec(b), vec(b) + vec(c) and vec(c) + vec(a) are coplanar, then prove that the vectors vec(a), vec(b) and vec(c) are also coplanar.

vec axx( vec bxx vec c) , vec bxx( vec cxx vec a) and vec cxx( vec axx vec b) are: linearly dependent (b) coplanar vector (c) parallel vectors (d) non coplanar vectors

if vecalpha||( vecbetaxx vecgamma) , then ( vecalphaxxbeta).(vecalphaxx vecgamma) equals to a. | vecalpha|^2( vecbeta.vecgamma) b. | vecbeta|^2( vecgamma. vecalpha) c. | vecgamma|^2( vecalpha. vecbeta) d. | vecalpha|| vecbeta|| vecgamma|

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If vecb and vecc are unit vectors, then for any arbitary vector veca,...

    Text Solution

    |

  2. If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

    Text Solution

    |

  3. If a(vecalphaxxvecbeta)=b(vecbetaxxvecgamma)+c(vecgammaxxvecalpha)=vec...

    Text Solution

    |

  4. if (vecaxxvecb)xx(vecbxxvecc)=vecb, " where " veca, vecb and vecc are ...

    Text Solution

    |

  5. If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and...

    Text Solution

    |

  6. A vector of magnitude 10 along the normal to the curve 3x^2+8x y+2y...

    Text Solution

    |

  7. If veca and vecb are two unit vectors inclined at an angle pi/3 then {...

    Text Solution

    |

  8. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  9. If veca+vecb ,vecc are any three non- coplanar vectors then the equa...

    Text Solution

    |

  10. Sholve the simultasneous vector equations for vecx and vecy: vecx+vecc...

    Text Solution

    |

  11. The condition for equations vecrxxveca = vecb and vecr xx vecc = vecd ...

    Text Solution

    |

  12. If veca=2hati + hatj + hatk, vecb=hati + 2hatj + 2hatk then [veca vecb...

    Text Solution

    |

  13. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  14. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  15. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  16. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  17. If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb...

    Text Solution

    |

  18. A( vec a),B( vec b)a n dC( vec c) are the vertices of triangle A B ...

    Text Solution

    |

  19. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  20. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |