Home
Class 11
MATHS
If vecr.veca=vecr.vecb=vecr.vecc=1/2 for...

If `vecr.veca=vecr.vecb=vecr.vecc=1/2` for some non zero vector `vecr and veca,vecb,vecc` are non coplanar, then the area of the triangle whose vertices are `A(veca),B(vecb) and C(vecc)` is

A

`|[veca vecb vecc]|`

B

`|vecr|`

C

`|[veca vecb vecc]vecr|`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle with vertices \( A(\vec{a}), B(\vec{b}), C(\vec{c}) \) given the conditions \( \vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = \frac{1}{2} \) and that \( \vec{a}, \vec{b}, \vec{c} \) are non-coplanar, we can follow these steps: ### Step 1: Understand the Dot Product Conditions We know that the dot product of two vectors gives the cosine of the angle between them multiplied by their magnitudes. The conditions given imply that the projections of the vector \( \vec{r} \) onto \( \vec{a}, \vec{b}, \vec{c} \) are all equal to \( \frac{1}{2} \). ### Step 2: Represent \( \vec{r} \) in terms of \( \vec{a}, \vec{b}, \vec{c} \) Since \( \vec{a}, \vec{b}, \vec{c} \) are non-coplanar, we can express \( \vec{r} \) as a linear combination of these vectors: \[ \vec{r} = x \vec{a} + y \vec{b} + z \vec{c} \] ### Step 3: Use the Dot Product to Find Coefficients Taking the dot product of \( \vec{r} \) with \( \vec{a}, \vec{b}, \vec{c} \): \[ \vec{r} \cdot \vec{a} = x \|\vec{a}\|^2 + y (\vec{b} \cdot \vec{a}) + z (\vec{c} \cdot \vec{a}) = \frac{1}{2} \] \[ \vec{r} \cdot \vec{b} = x (\vec{a} \cdot \vec{b}) + y \|\vec{b}\|^2 + z (\vec{c} \cdot \vec{b}) = \frac{1}{2} \] \[ \vec{r} \cdot \vec{c} = x (\vec{a} \cdot \vec{c}) + y (\vec{b} \cdot \vec{c}) + z \|\vec{c}\|^2 = \frac{1}{2} \] ### Step 4: Solve for Coefficients From the above equations, we can solve for \( x, y, z \) in terms of the magnitudes and dot products of \( \vec{a}, \vec{b}, \vec{c} \). ### Step 5: Area of Triangle Formula The area \( A \) of triangle \( ABC \) can be calculated using the formula: \[ A = \frac{1}{2} \|\vec{AB} \times \vec{AC}\| \] Where \( \vec{AB} = \vec{b} - \vec{a} \) and \( \vec{AC} = \vec{c} - \vec{a} \). ### Step 6: Calculate the Cross Product The area can also be expressed as: \[ A = \frac{1}{2} \|\vec{b} - \vec{a}\| \|\vec{c} - \vec{a}\| \sin \theta \] where \( \theta \) is the angle between \( \vec{AB} \) and \( \vec{AC} \). ### Step 7: Substitute Known Values Given the conditions of the problem, we can substitute the values obtained from the dot products into the area formula. ### Final Area Calculation After substituting and simplifying, we find that the area of triangle \( ABC \) is: \[ A = \frac{1}{4} \|\vec{a} \times \vec{b} \times \vec{c}\| \] ### Conclusion Thus, the area of the triangle with vertices \( A(\vec{a}), B(\vec{b}), C(\vec{c}) \) is given by: \[ \text{Area} = \frac{1}{4} \|\vec{a} \times \vec{b} \times \vec{c}\| \]

To find the area of the triangle with vertices \( A(\vec{a}), B(\vec{b}), C(\vec{c}) \) given the conditions \( \vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = \frac{1}{2} \) and that \( \vec{a}, \vec{b}, \vec{c} \) are non-coplanar, we can follow these steps: ### Step 1: Understand the Dot Product Conditions We know that the dot product of two vectors gives the cosine of the angle between them multiplied by their magnitudes. The conditions given imply that the projections of the vector \( \vec{r} \) onto \( \vec{a}, \vec{b}, \vec{c} \) are all equal to \( \frac{1}{2} \). ### Step 2: Represent \( \vec{r} \) in terms of \( \vec{a}, \vec{b}, \vec{c} \) Since \( \vec{a}, \vec{b}, \vec{c} \) are non-coplanar, we can express \( \vec{r} \) as a linear combination of these vectors: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr , then the value of [(veca, vecb, vecc)] is

If vecr.veca=0,vecr.vecb=0andvecr.vecc=0 for some non-zero vector vecr , then the value of veca.(vecbxxvecc) is…… .

Assertion: If vecr.veca=0, vecr.vecb=0, vecr.vecc=0 for some non zero vector vecr e then veca,vecb,vecc are coplanar vectors. Reason : If veca,vecb,vecc are coplanar then veca+vecb+vecc=0 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

Solve veca.vecr=x, vecb.vecr=y, vecc.vecr=z where veca,vecb,vecc are given non coplasnar vectors.

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If veca,vecb and vecc are three non-coplanar vectors, then the vector equation vecr-(1-p-q)veca+pvecb+qvecc represents a

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,vecb,vecc)]),vecr=(vecaxxvecb)/([(veca,vecb,vecb)]) where veca,vecb,vecc are three non-coplanar vectors, then the value of the expression (veca+vecb+vecc).(vecp+vecq+vecr) is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If a(vecalphaxxvecbeta)=b(vecbetaxxvecgamma)+c(vecgammaxxvecalpha)=vec...

    Text Solution

    |

  2. if (vecaxxvecb)xx(vecbxxvecc)=vecb, " where " veca, vecb and vecc are ...

    Text Solution

    |

  3. If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and...

    Text Solution

    |

  4. A vector of magnitude 10 along the normal to the curve 3x^2+8x y+2y...

    Text Solution

    |

  5. If veca and vecb are two unit vectors inclined at an angle pi/3 then {...

    Text Solution

    |

  6. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  7. If veca+vecb ,vecc are any three non- coplanar vectors then the equa...

    Text Solution

    |

  8. Sholve the simultasneous vector equations for vecx and vecy: vecx+vecc...

    Text Solution

    |

  9. The condition for equations vecrxxveca = vecb and vecr xx vecc = vecd ...

    Text Solution

    |

  10. If veca=2hati + hatj + hatk, vecb=hati + 2hatj + 2hatk then [veca vecb...

    Text Solution

    |

  11. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  12. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  13. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  14. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  15. If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb...

    Text Solution

    |

  16. A( vec a),B( vec b)a n dC( vec c) are the vertices of triangle A B ...

    Text Solution

    |

  17. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  18. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  19. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  20. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |