Home
Class 11
MATHS
If veca and vecb are two unit vectors in...

If `veca and vecb` are two unit vectors inclined at an angle `pi/3` then `{ veca xx (vecb+veca xx vecb)} .vecb` is equal to (a) `-3/4` (b) `1/4` (c) `3/4` (d) `1/2`

A

`(-3)/4`

B

`1/4`

C

`3/4`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \(\vec{a} \times (\vec{b} + \vec{a} \times \vec{b}) \cdot \vec{b}\) given that \(\vec{a}\) and \(\vec{b}\) are unit vectors inclined at an angle of \(\frac{\pi}{3}\). ### Step-by-Step Solution: 1. **Understanding the Given Information:** - Both \(\vec{a}\) and \(\vec{b}\) are unit vectors. - The angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{\pi}{3}\). - Therefore, \(|\vec{a}| = 1\) and \(|\vec{b}| = 1\). 2. **Finding the Dot Product \(\vec{a} \cdot \vec{b}\):** \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\left(\frac{\pi}{3}\right) = 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2} \] 3. **Expanding the Expression:** We need to evaluate: \[ \vec{a} \times (\vec{b} + \vec{a} \times \vec{b}) \cdot \vec{b} \] This can be rewritten as: \[ \vec{a} \times \vec{b} + \vec{a} \times (\vec{a} \times \vec{b}) \] 4. **Using the Vector Triple Product Identity:** The vector triple product identity states: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] Applying this identity to \(\vec{a} \times (\vec{a} \times \vec{b})\): \[ \vec{a} \times (\vec{a} \times \vec{b}) = (\vec{a} \cdot \vec{b}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{b} \] Since \(\vec{a} \cdot \vec{a} = 1\): \[ \vec{a} \times (\vec{a} \times \vec{b}) = \left(\frac{1}{2}\right) \vec{a} - \vec{b} \] 5. **Substituting Back:** Now substituting back into our expression: \[ \vec{a} \times \vec{b} + \left(\frac{1}{2} \vec{a} - \vec{b}\right) \] We can simplify this to: \[ \vec{a} \times \vec{b} + \frac{1}{2} \vec{a} - \vec{b} \] 6. **Taking the Dot Product with \(\vec{b}\):** Now we need to dot this entire expression with \(\vec{b}\): \[ \left(\vec{a} \times \vec{b} + \frac{1}{2} \vec{a} - \vec{b}\right) \cdot \vec{b} \] - The term \(\vec{a} \times \vec{b} \cdot \vec{b} = 0\) (since the cross product is perpendicular to both vectors). - The term \(\frac{1}{2} \vec{a} \cdot \vec{b} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\). - The term \(-\vec{b} \cdot \vec{b} = -1\). So, combining these: \[ 0 + \frac{1}{4} - 1 = \frac{1}{4} - 1 = -\frac{3}{4} \] ### Final Answer: Thus, the value of \(\{\vec{a} \times (\vec{b} + \vec{a} \times \vec{b})\} \cdot \vec{b}\) is \(-\frac{3}{4}\). ### Conclusion: The correct option is (a) \(-\frac{3}{4}\).

To solve the problem, we need to evaluate the expression \(\vec{a} \times (\vec{b} + \vec{a} \times \vec{b}) \cdot \vec{b}\) given that \(\vec{a}\) and \(\vec{b}\) are unit vectors inclined at an angle of \(\frac{\pi}{3}\). ### Step-by-Step Solution: 1. **Understanding the Given Information:** - Both \(\vec{a}\) and \(\vec{b}\) are unit vectors. - The angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{\pi}{3}\). - Therefore, \(|\vec{a}| = 1\) and \(|\vec{b}| = 1\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .

If veca and vecb are unit vectors, then angle between veca and vecb for sqrt3 ​ veca − vec b to be unit vector is

If veca and vecb are othogonal unit vectors, then for a vector vecr non - coplanar with veca and vecb vector vecr xx veca is equal to

Let veca and vecb are two vectors inclined at an angle of 60^(@) , If |veca|=|vecb|=2 ,the the angle between veca and veca + vecb is

If theta is the angle between any two vectors veca and vec b , then | veca . vecb |=| veca xx vecb| when theta is equal to(A) 0 (B) pi/4 (C) pi/2 (D) pi

If theta is the angle between any two vectors veca and vecb , then |veca.vecb|=|veca xx vecb| when theta is equal to

If the vectors veca and vecb are mutually perpendicular, then veca xx {veca xx {veca xx {veca xx vecb}} is equal to:

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and...

    Text Solution

    |

  2. A vector of magnitude 10 along the normal to the curve 3x^2+8x y+2y...

    Text Solution

    |

  3. If veca and vecb are two unit vectors inclined at an angle pi/3 then {...

    Text Solution

    |

  4. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  5. If veca+vecb ,vecc are any three non- coplanar vectors then the equa...

    Text Solution

    |

  6. Sholve the simultasneous vector equations for vecx and vecy: vecx+vecc...

    Text Solution

    |

  7. The condition for equations vecrxxveca = vecb and vecr xx vecc = vecd ...

    Text Solution

    |

  8. If veca=2hati + hatj + hatk, vecb=hati + 2hatj + 2hatk then [veca vecb...

    Text Solution

    |

  9. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  10. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  11. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  12. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  13. If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb...

    Text Solution

    |

  14. A( vec a),B( vec b)a n dC( vec c) are the vertices of triangle A B ...

    Text Solution

    |

  15. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  16. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  17. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  18. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  19. If the vectors veca and vecb are perpendicular to each other then a ve...

    Text Solution

    |

  20. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |