Home
Class 11
MATHS
If veca and vecb are othogonal unit vect...

If `veca and vecb` are othogonal unit vectors, then for a vector `vecr` non - coplanar with `veca and vecb` vector `vecr xx veca` is equal to

A

`[vecr vecavecb]vecb - (vecr.vecb)(vecbxxveca)`

B

`[vecrvecavecb] (veca+vecb)`

C

`[vecr vecavecb]veca + (vecr.veca) vecaxxvecb`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for the vector \( \vec{r} \times \vec{a} \) given that \( \vec{a} \) and \( \vec{b} \) are orthogonal unit vectors, and \( \vec{r} \) is a vector that is non-coplanar with \( \vec{a} \) and \( \vec{b} \). ### Step-by-Step Solution: 1. **Understand the Setup**: - We know that \( \vec{a} \) and \( \vec{b} \) are orthogonal unit vectors. This means: \[ \vec{a} \cdot \vec{b} = 0 \] - The magnitude of both vectors is 1: \[ |\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1 \] 2. **Express \( \vec{r} \)**: - Since \( \vec{r} \) is non-coplanar with \( \vec{a} \) and \( \vec{b} \), we can express \( \vec{r} \) in terms of \( \vec{a} \), \( \vec{b} \), and their cross product: \[ \vec{r} = \lambda \vec{a} + \mu \vec{b} + \gamma (\vec{a} \times \vec{b}) \] - Here, \( \lambda \), \( \mu \), and \( \gamma \) are scalars. 3. **Calculate \( \vec{r} \times \vec{a} \)**: - We can compute the cross product: \[ \vec{r} \times \vec{a} = (\lambda \vec{a} + \mu \vec{b} + \gamma (\vec{a} \times \vec{b})) \times \vec{a} \] - Using the distributive property of the cross product: \[ \vec{r} \times \vec{a} = \lambda (\vec{a} \times \vec{a}) + \mu (\vec{b} \times \vec{a}) + \gamma ((\vec{a} \times \vec{b}) \times \vec{a}) \] - Since \( \vec{a} \times \vec{a} = \vec{0} \): \[ \vec{r} \times \vec{a} = \mu (\vec{b} \times \vec{a}) + \gamma ((\vec{a} \times \vec{b}) \times \vec{a}) \] 4. **Simplify \( (\vec{a} \times \vec{b}) \times \vec{a} \)**: - Using the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] - Applying it here: \[ (\vec{a} \times \vec{b}) \times \vec{a} = (\vec{a} \cdot \vec{a}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{a} \] - Since \( \vec{a} \cdot \vec{b} = 0 \) and \( \vec{a} \cdot \vec{a} = 1 \): \[ (\vec{a} \times \vec{b}) \times \vec{a} = \vec{b} \] 5. **Final Expression**: - Now substituting back: \[ \vec{r} \times \vec{a} = \mu (\vec{b} \times \vec{a}) + \gamma \vec{b} \] - Since \( \vec{b} \times \vec{a} = -(\vec{a} \times \vec{b}) \): \[ \vec{r} \times \vec{a} = -\mu (\vec{a} \times \vec{b}) + \gamma \vec{b} \] ### Conclusion: Thus, the expression for \( \vec{r} \times \vec{a} \) is: \[ \vec{r} \times \vec{a} = -\mu (\vec{a} \times \vec{b}) + \gamma \vec{b} \]

To solve the problem, we need to find the expression for the vector \( \vec{r} \times \vec{a} \) given that \( \vec{a} \) and \( \vec{b} \) are orthogonal unit vectors, and \( \vec{r} \) is a vector that is non-coplanar with \( \vec{a} \) and \( \vec{b} \). ### Step-by-Step Solution: 1. **Understand the Setup**: - We know that \( \vec{a} \) and \( \vec{b} \) are orthogonal unit vectors. This means: \[ \vec{a} \cdot \vec{b} = 0 ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : If veca and vecb be two given non zero vectors then any vector vecr coplanar with veca and vecb can be represented as vecr=xveca+yvecb where x &yare some scalars. STATEMENT-2 : If veca,vecbvecc are three non-coplanar vectors, then any vector vecr in space can be expressed as vecr=xveca+yvecb+zvecc , where x,y,z are some scalars. STATEMENT-3 : If vectors veca & vecb represent two sides of a triangle, then lambda(veca+vecb) (where lambda ne 1 ) can represent the vector along third side.

If veca =hati + hatj, vecb = hati - hatj + hatk and vecc is a unit vector bot to the vector veca and coplanar with veca and vecb , then a unit vector vecd is perpendicular to both veca and vecc is:

If veca and vecb are unit vectors, then angle between veca and vecb for sqrt3 ​ veca − vec b to be unit vector is

If veca and vecb are two unit vectors, then the vector (veca+vecb)xx(vecaxxvecb) is parallel to the vector

If vecb and vecc are unit vectors, then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecc))xx (vecb xx vecc)) .(vecb -vecc) is always equal to

If veca and vecb are two given vectors and k is any scalar,then find the vector vecr satisfying vecr xx veca +k vecr=vecb .

veca and vecb are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to veca, vecb and veca xxvecb is equal to

If veca and vecb are non-zero, non parallel vectors, then the value of |veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2) equals

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. A vector of magnitude 10 along the normal to the curve 3x^2+8x y+2y...

    Text Solution

    |

  2. If veca and vecb are two unit vectors inclined at an angle pi/3 then {...

    Text Solution

    |

  3. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  4. If veca+vecb ,vecc are any three non- coplanar vectors then the equa...

    Text Solution

    |

  5. Sholve the simultasneous vector equations for vecx and vecy: vecx+vecc...

    Text Solution

    |

  6. The condition for equations vecrxxveca = vecb and vecr xx vecc = vecd ...

    Text Solution

    |

  7. If veca=2hati + hatj + hatk, vecb=hati + 2hatj + 2hatk then [veca vecb...

    Text Solution

    |

  8. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  9. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  10. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  11. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  12. If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb...

    Text Solution

    |

  13. A( vec a),B( vec b)a n dC( vec c) are the vertices of triangle A B ...

    Text Solution

    |

  14. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  15. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  16. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  17. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  18. If the vectors veca and vecb are perpendicular to each other then a ve...

    Text Solution

    |

  19. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  20. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |