Home
Class 11
MATHS
If veca+vecb ,vecc are any three non- ...

If `veca+vecb ,vecc ` are any three non- coplanar vectors then the equation `[vecbxxvecc veccxxveca vecaxxvecb]x^(2) + [veca+vecbvecb+veccvecc+veca] x+1 +[vecb-veccvecc -vecc-vecaveca -vecb] =0` has roots

A

real and distinct

B

real

C

equal

D

imaginary

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the equation involving the vectors and determine the nature of its roots. Let's break down the solution step by step. ### Step 1: Understand the Given Equation The equation is given as: \[ [\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}] x^2 + [\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] x + 1 + [\vec{b} - \vec{c}, \vec{c} - \vec{a}, \vec{a} - \vec{b}] = 0 \] We need to simplify this expression. ### Step 2: Simplify the First Term The first term can be expressed using the scalar triple product: \[ [\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}] = [\vec{b}, \vec{c}, \vec{a}]^2 \] Let \( A = [\vec{a}, \vec{b}, \vec{c}] \). Then: \[ [\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}] = A^2 \] ### Step 3: Simplify the Second Term The second term can also be simplified: \[ [\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = [\vec{a}, \vec{b}, \vec{c}] + [\vec{b}, \vec{c}, \vec{a}] = 2A \] ### Step 4: Simplify the Third Term The third term can be simplified as follows: \[ [\vec{b} - \vec{c}, \vec{c} - \vec{a}, \vec{a} - \vec{b}] = [\vec{b}, \vec{c}, \vec{a}] - [\vec{c}, \vec{a}, \vec{b}] = 0 \] ### Step 5: Substitute Back into the Equation Now substituting these simplifications back into the equation gives: \[ A^2 x^2 + 2A x + 1 = 0 \] ### Step 6: Find the Discriminant To determine the nature of the roots, we calculate the discriminant \( D \): \[ D = b^2 - 4ac = (2A)^2 - 4(A^2)(1) = 4A^2 - 4A^2 = 0 \] ### Step 7: Conclusion Since the discriminant \( D = 0 \), the quadratic equation has equal roots. ### Final Answer Therefore, the equation has equal roots. ---

To solve the given problem, we need to analyze the equation involving the vectors and determine the nature of its roots. Let's break down the solution step by step. ### Step 1: Understand the Given Equation The equation is given as: \[ [\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}] x^2 + [\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] x + 1 + [\vec{b} - \vec{c}, \vec{c} - \vec{a}, \vec{a} - \vec{b}] = 0 \] We need to simplify this expression. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If the three vectors veca,vecb,vecc are non coplanar express each of vecbxxvecc, veccxxveca, vecaxxvecb in terms of veca,vecb,vecc .

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca and vecb are two unit vectors inclined at an angle pi/3 then {...

    Text Solution

    |

  2. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  3. If veca+vecb ,vecc are any three non- coplanar vectors then the equa...

    Text Solution

    |

  4. Sholve the simultasneous vector equations for vecx and vecy: vecx+vecc...

    Text Solution

    |

  5. The condition for equations vecrxxveca = vecb and vecr xx vecc = vecd ...

    Text Solution

    |

  6. If veca=2hati + hatj + hatk, vecb=hati + 2hatj + 2hatk then [veca vecb...

    Text Solution

    |

  7. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  8. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  9. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  10. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  11. If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb...

    Text Solution

    |

  12. A( vec a),B( vec b)a n dC( vec c) are the vertices of triangle A B ...

    Text Solution

    |

  13. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  14. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  15. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  16. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  17. If the vectors veca and vecb are perpendicular to each other then a ve...

    Text Solution

    |

  18. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  19. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  20. If the unit vectors veca and vecb are inclined of an angle 2 theta ...

    Text Solution

    |