Home
Class 11
MATHS
Sholve the simultasneous vector equation...

Sholve the simultasneous vector equations for `vecx and vecy: vecx+veccxxvecy=veca and vecy+veccxxvecx=vecb, vecc!=0`

A

`vecx=(vecbxxvecc+veca+(vecc.veca)vecc)/(1+ vecc.vecc)`

B

`vecx=(veccxxvecb+vecb+(vecc.veca)vecc)/(1+vecc.vecc)`

C

`vecy=(vecaxxvecc+vecb+(vecc.vecb)vecc)/(1+vecc.vecc)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the simultaneous vector equations for \(\vec{x}\) and \(\vec{y}\): 1. **Write the Given Equations**: \[ \vec{x} + \vec{c} \times \vec{y} = \vec{a} \tag{1} \] \[ \vec{y} + \vec{c} \times \vec{x} = \vec{b} \tag{2} \] 2. **Cross Product with \(\vec{c}\)**: Take the cross product of equation (1) with \(\vec{c}\): \[ \vec{c} \times \vec{x} + \vec{c} \times (\vec{c} \times \vec{y}) = \vec{c} \times \vec{a} \] Using the vector triple product identity \(\vec{c} \times (\vec{c} \times \vec{y}) = \vec{c}(\vec{c} \cdot \vec{y}) - \vec{c} \cdot \vec{c} \vec{y}\): \[ \vec{c} \times \vec{x} + \vec{c}(\vec{c} \cdot \vec{y}) - (\vec{c} \cdot \vec{c}) \vec{y} = \vec{c} \times \vec{a} \tag{3} \] 3. **Substitute \(\vec{c} \times \vec{x}\)**: From equation (2), we can express \(\vec{c} \times \vec{x}\) as: \[ \vec{c} \times \vec{x} = \vec{c} \times (\vec{b} - \vec{c} \times \vec{y}) = \vec{c} \times \vec{b} - \vec{c} \times (\vec{c} \times \vec{y}) \] Substitute this back into equation (3): \[ \vec{c} \times \vec{b} - \vec{c} \times (\vec{c} \times \vec{y}) + \vec{c}(\vec{c} \cdot \vec{y}) - (\vec{c} \cdot \vec{c}) \vec{y} = \vec{c} \times \vec{a} \] 4. **Simplify the Equation**: Rearranging gives: \[ \vec{c} \times \vec{b} + \vec{c}(\vec{c} \cdot \vec{y}) - (\vec{c} \cdot \vec{c}) \vec{y} = \vec{c} \times \vec{a} \] This can be simplified to find \(\vec{y}\): \[ \vec{y}(1 + \vec{c} \cdot \vec{c}) = \vec{c} \times \vec{a} - \vec{c} \times \vec{b} \] Thus, \[ \vec{y} = \frac{\vec{c} \times \vec{a} - \vec{c} \times \vec{b}}{1 + \vec{c} \cdot \vec{c}} \tag{4} \] 5. **Finding \(\vec{x}\)**: Now, we can find \(\vec{x}\) using equation (1): \[ \vec{x} = \vec{a} - \vec{c} \times \vec{y} \] Substitute \(\vec{y}\) from equation (4): \[ \vec{x} = \vec{a} - \vec{c} \times \left(\frac{\vec{c} \times \vec{a} - \vec{c} \times \vec{b}}{1 + \vec{c} \cdot \vec{c}}\right) \] 6. **Final Expressions**: After simplification, we can express \(\vec{x}\) and \(\vec{y}\) in terms of \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Final Results: \[ \vec{y} = \frac{\vec{c} \times \vec{a} - \vec{c} \times \vec{b}}{1 + \vec{c} \cdot \vec{c}} \] \[ \vec{x} = \vec{a} - \vec{c} \times \left(\frac{\vec{c} \times \vec{a} - \vec{c} \times \vec{b}}{1 + \vec{c} \cdot \vec{c}}\right) \]

To solve the simultaneous vector equations for \(\vec{x}\) and \(\vec{y}\): 1. **Write the Given Equations**: \[ \vec{x} + \vec{c} \times \vec{y} = \vec{a} \tag{1} \] \[ \vec{y} + \vec{c} \times \vec{x} = \vec{b} \tag{2} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Solve the following simultaneous equation for vectors vecx and vecy, if vecx+vecy=veca, vecx xxvecy=vecb, vecx.veca=1

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

Solve the vector equation vecr xx vecb = veca xx vecb, vecr.vecc = 0 provided that vecc is not perpendicular to vecb

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

Let vecp,vecq, vecr be three mutually perpendicular vectors of the same magnitude. If a vector vecx satisfies the equation vecpxx{vecx-vecq)xxvec p}+vecq xx{vecx-vecr)xxvecq}+vecrxx{vecx-vecp)xxvecr}=vec0 , then vecx is given by

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If vector vecx satisfying vecx xx veca+ (vecx.vecb)vecc =vecd is given by vecx = lambda veca + veca xx (vecaxx(vecd xx vecc))/((veca.vecc)|veca|^(2)) , then find out the value of lambda

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb\')+(veccxxvecc\') is (A) veca+vecb+vecc (B) veca\'+vecb\'+vecc\' (C) 0 (D) none of these

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  2. If veca+vecb ,vecc are any three non- coplanar vectors then the equa...

    Text Solution

    |

  3. Sholve the simultasneous vector equations for vecx and vecy: vecx+vecc...

    Text Solution

    |

  4. The condition for equations vecrxxveca = vecb and vecr xx vecc = vecd ...

    Text Solution

    |

  5. If veca=2hati + hatj + hatk, vecb=hati + 2hatj + 2hatk then [veca vecb...

    Text Solution

    |

  6. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  7. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  8. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  9. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  10. If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb...

    Text Solution

    |

  11. A( vec a),B( vec b)a n dC( vec c) are the vertices of triangle A B ...

    Text Solution

    |

  12. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  13. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  14. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  15. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  16. If the vectors veca and vecb are perpendicular to each other then a ve...

    Text Solution

    |

  17. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  18. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  19. If the unit vectors veca and vecb are inclined of an angle 2 theta ...

    Text Solution

    |

  20. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |