Home
Class 11
MATHS
The condition for equations vecrxxveca =...

The condition for equations `vecrxxveca = vecb and vecr xx vecc = vecd` to be consistent is

A

`vecb.vecc=veca.vecd`

B

`veca.vecb=vecc.vecd`

C

`vecb.vecc+veca.vecd=0`

D

`veca.vecb+vecc.vecd=0`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the condition for the equations \( \vec{r} \times \vec{a} = \vec{b} \) and \( \vec{r} \times \vec{c} = \vec{d} \) to be consistent, we can follow these steps: ### Step 1: Cross both sides of the first equation with \( \vec{d} \) We start with the first equation: \[ \vec{r} \times \vec{a} = \vec{b} \] Now, we cross both sides with \( \vec{d} \): \[ \vec{d} \times (\vec{r} \times \vec{a}) = \vec{d} \times \vec{b} \] ### Step 2: Apply the vector triple product identity Using the vector triple product identity, we can rewrite the left-hand side: \[ \vec{d} \times (\vec{r} \times \vec{a}) = (\vec{d} \cdot \vec{a}) \vec{r} - (\vec{d} \cdot \vec{r}) \vec{a} \] Thus, we have: \[ (\vec{d} \cdot \vec{a}) \vec{r} - (\vec{d} \cdot \vec{r}) \vec{a} = \vec{d} \times \vec{b} \] ### Step 3: Rearranging the equation Rearranging gives us: \[ (\vec{d} \cdot \vec{a}) \vec{r} - (\vec{d} \cdot \vec{r}) \vec{a} - \vec{d} \times \vec{b} = 0 \] ### Step 4: Cross the second equation with \( \vec{b} \) Now, we take the second equation: \[ \vec{r} \times \vec{c} = \vec{d} \] Cross both sides with \( \vec{b} \): \[ \vec{b} \times (\vec{r} \times \vec{c}) = \vec{b} \times \vec{d} \] ### Step 5: Apply the vector triple product identity again Using the vector triple product identity again: \[ \vec{b} \times (\vec{r} \times \vec{c}) = (\vec{b} \cdot \vec{c}) \vec{r} - (\vec{b} \cdot \vec{r}) \vec{c} \] Thus, we have: \[ (\vec{b} \cdot \vec{c}) \vec{r} - (\vec{b} \cdot \vec{r}) \vec{c} = \vec{b} \times \vec{d} \] ### Step 6: Rearranging the second equation Rearranging gives us: \[ (\vec{b} \cdot \vec{c}) \vec{r} - (\vec{b} \cdot \vec{r}) \vec{c} - \vec{b} \times \vec{d} = 0 \] ### Step 7: Combine both equations Now we have two equations: 1. \((\vec{d} \cdot \vec{a}) \vec{r} - (\vec{d} \cdot \vec{r}) \vec{a} - \vec{d} \times \vec{b} = 0\) 2. \((\vec{b} \cdot \vec{c}) \vec{r} - (\vec{b} \cdot \vec{r}) \vec{c} - \vec{b} \times \vec{d} = 0\) ### Step 8: Set the coefficients of \( \vec{r} \) to be equal For these equations to be consistent, the coefficients of \( \vec{r} \) must be equal. Therefore, we can conclude: \[ \vec{b} \cdot \vec{c} + \vec{d} \cdot \vec{a} = 0 \] ### Final Condition Thus, the condition for the equations to be consistent is: \[ \vec{b} \cdot \vec{c} + \vec{d} \cdot \vec{a} = 0 \]

To determine the condition for the equations \( \vec{r} \times \vec{a} = \vec{b} \) and \( \vec{r} \times \vec{c} = \vec{d} \) to be consistent, we can follow these steps: ### Step 1: Cross both sides of the first equation with \( \vec{d} \) We start with the first equation: \[ \vec{r} \times \vec{a} = \vec{b} \] Now, we cross both sides with \( \vec{d} \): ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Solve the vector equation vecr xx vecb = veca xx vecb, vecr.vecc = 0 provided that vecc is not perpendicular to vecb

If veca, vecb, vecc and vecd ar distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.

If veca,vecb,vecc,vecd are four distinct vectors satisfying the conditions vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxd then prove that veca.vecb+vecc.vecd!=veca.vecc+vecb.vecd

[vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0

veca,vecb,vecc are three non-coplanar such that veca + vecb + vecc = alpha vecd and vecb + vecc + vecd = beta veca , then veca + vecb + vecc + vecd is equal to:

If vecA xx vecB = vecC+ vecD , them select the correct alternative:

The vectors veca and vecb are not perpendicular and vecc and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb)vecb (B) vecb+(vecb.vecc)/(veca.vecb)vecc (C) vecc-(veca.vecc)/(veca.vecb)vecb (D) vecb-(vecb.vecc)/(veca.vecb)vecc

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca+vecb ,vecc are any three non- coplanar vectors then the equa...

    Text Solution

    |

  2. Sholve the simultasneous vector equations for vecx and vecy: vecx+vecc...

    Text Solution

    |

  3. The condition for equations vecrxxveca = vecb and vecr xx vecc = vecd ...

    Text Solution

    |

  4. If veca=2hati + hatj + hatk, vecb=hati + 2hatj + 2hatk then [veca vecb...

    Text Solution

    |

  5. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  6. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  7. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  8. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  9. If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb...

    Text Solution

    |

  10. A( vec a),B( vec b)a n dC( vec c) are the vertices of triangle A B ...

    Text Solution

    |

  11. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  12. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  13. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  14. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  15. If the vectors veca and vecb are perpendicular to each other then a ve...

    Text Solution

    |

  16. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  17. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  18. If the unit vectors veca and vecb are inclined of an angle 2 theta ...

    Text Solution

    |

  19. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  20. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |