Home
Class 11
MATHS
If veca=2hati + hatj + hatk, vecb=hati +...

If `veca=2hati + hatj + hatk`, `vecb=hati + 2hatj + 2hatk` then `[veca vecb veci] hati` + `[veca vecb vecj] hatj` + `[veca vecb hatk] k` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the expression given by: \[ [\vec{a} \, \vec{b} \, \vec{i}] \hat{i} + [\vec{a} \, \vec{b} \, \vec{j}] \hat{j} + [\vec{a} \, \vec{b} \, \hat{k}] \hat{k} \] where \(\vec{a} = 2\hat{i} + \hat{j} + \hat{k}\) and \(\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}\). ### Step 1: Calculate \([\vec{a} \, \vec{b} \, \vec{i}]\) We set up the determinant: \[ [\vec{a} \, \vec{b} \, \vec{i}] = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 0 \end{vmatrix} \] Calculating this determinant: \[ = 2 \begin{vmatrix} 2 & 0 \\ 0 & 0 \end{vmatrix} - 1 \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} \] Calculating the smaller determinants: \[ = 2(0) - 1(0) + 1(0 - 2) = 0 - 0 - 2 = -2 \] So, \([\vec{a} \, \vec{b} \, \vec{i}] = -2\). ### Step 2: Calculate \([\vec{a} \, \vec{b} \, \vec{j}]\) Now we calculate: \[ [\vec{a} \, \vec{b} \, \vec{j}] = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 2 \\ 0 & 1 & 0 \end{vmatrix} \] Calculating this determinant: \[ = 2 \begin{vmatrix} 2 & 2 \\ 1 & 0 \end{vmatrix} - 1 \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} \] Calculating the smaller determinants: \[ = 2(0 - 2) - 1(0) + 1(1 - 0) = -4 + 0 + 1 = -3 \] So, \([\vec{a} \, \vec{b} \, \vec{j}] = -3\). ### Step 3: Calculate \([\vec{a} \, \vec{b} \, \hat{k}]\) Now we calculate: \[ [\vec{a} \, \vec{b} \, \hat{k}] = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 1 \end{vmatrix} \] Calculating this determinant: \[ = 2 \begin{vmatrix} 2 & 2 \\ 0 & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} \] Calculating the smaller determinants: \[ = 2(2) - 1(1) + 1(0) = 4 - 1 + 0 = 3 \] So, \([\vec{a} \, \vec{b} \, \hat{k}] = 3\). ### Step 4: Combine the Results Now we can substitute the values we found back into the original expression: \[ [\vec{a} \, \vec{b} \, \vec{i}] \hat{i} + [\vec{a} \, \vec{b} \, \vec{j}] \hat{j} + [\vec{a} \, \vec{b} \, \hat{k}] \hat{k} \] This becomes: \[ (-2) \hat{i} + (-3) \hat{j} + (3) \hat{k} \] Thus, the final result is: \[ -2 \hat{i} - 3 \hat{j} + 3 \hat{k} \] ### Final Answer: \[ \boxed{-2 \hat{i} - 3 \hat{j} + 3 \hat{k}} \]

To solve the problem, we need to calculate the expression given by: \[ [\vec{a} \, \vec{b} \, \vec{i}] \hat{i} + [\vec{a} \, \vec{b} \, \vec{j}] \hat{j} + [\vec{a} \, \vec{b} \, \hat{k}] \hat{k} \] where \(\vec{a} = 2\hat{i} + \hat{j} + \hat{k}\) and \(\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca = hati+hatj-2hatk, vecb=2hati-3hatj+hatk the value of (2veca+3vecb) . (2vecbxx3veca) is :

If vecA=3hati+hatj+2hatk and vecB=2hati-2hatj+4hatk , then value of |vecA X vecB| will be

If veca vecb are non zero and non collinear vectors, then [(veca, vecb, veci)]hati+[(veca, vecb, vecj)]hatj+[(veca, vecb, veck)]hatk is equal to

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Sholve the simultasneous vector equations for vecx and vecy: vecx+vecc...

    Text Solution

    |

  2. The condition for equations vecrxxveca = vecb and vecr xx vecc = vecd ...

    Text Solution

    |

  3. If veca=2hati + hatj + hatk, vecb=hati + 2hatj + 2hatk then [veca vecb...

    Text Solution

    |

  4. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  5. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  6. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  7. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  8. If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb...

    Text Solution

    |

  9. A( vec a),B( vec b)a n dC( vec c) are the vertices of triangle A B ...

    Text Solution

    |

  10. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  11. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  12. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  13. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  14. If the vectors veca and vecb are perpendicular to each other then a ve...

    Text Solution

    |

  15. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  16. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  17. If the unit vectors veca and vecb are inclined of an angle 2 theta ...

    Text Solution

    |

  18. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  19. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  20. veca and vecb are two given vectors. On these vectors as adjacent side...

    Text Solution

    |