Home
Class 11
MATHS
If veca,vecb and vecc are three non copl...

If `veca,vecb and vecc` are three non coplanar vectors and `vecr` is any vector in space, then `(vecaxxvecb)xx(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=`

A

`[veca vecb vecc]vecr`

B

`2 [veca vecb vecc]vecr`

C

`3 [veca vecb vecc]vecr`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b}) \] where \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are non-coplanar vectors, and \(\vec{r}\) is any vector in space. ### Step 1: Use the Vector Triple Product Identity We can apply the vector triple product identity, which states that: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Using this identity, we can rewrite each term in the expression. ### Step 2: Rewrite Each Term 1. For the first term \((\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c})\): \[ (\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} \, \vec{r} - (\vec{a} \times \vec{b}) \cdot \vec{r} \, \vec{c} \] 2. For the second term \((\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a})\): \[ (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) = (\vec{b} \times \vec{c}) \cdot \vec{a} \, \vec{r} - (\vec{b} \times \vec{c}) \cdot \vec{r} \, \vec{a} \] 3. For the third term \((\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b})\): \[ (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b}) = (\vec{c} \times \vec{a}) \cdot \vec{b} \, \vec{r} - (\vec{c} \times \vec{a}) \cdot \vec{r} \, \vec{b} \] ### Step 3: Combine All Terms Now we can combine all three rewritten terms: \[ \begin{align*} & \left[(\vec{a} \times \vec{b}) \cdot \vec{c} \, \vec{r} - (\vec{a} \times \vec{b}) \cdot \vec{r} \, \vec{c}\right] + \left[(\vec{b} \times \vec{c}) \cdot \vec{a} \, \vec{r} - (\vec{b} \times \vec{c}) \cdot \vec{r} \, \vec{a}\right] + \left[(\vec{c} \times \vec{a}) \cdot \vec{b} \, \vec{r} - (\vec{c} \times \vec{a}) \cdot \vec{r} \, \vec{b}\right] \\ & = \left[(\vec{a} \times \vec{b}) \cdot \vec{c} + (\vec{b} \times \vec{c}) \cdot \vec{a} + (\vec{c} \times \vec{a}) \cdot \vec{b}\right] \vec{r} \\ & - \left[(\vec{a} \times \vec{b}) \cdot \vec{r} \, \vec{c} + (\vec{b} \times \vec{c}) \cdot \vec{r} \, \vec{a} + (\vec{c} \times \vec{a}) \cdot \vec{r} \, \vec{b}\right] \end{align*} \] ### Step 4: Factor Out Common Terms Let \( V = (\vec{a} \times \vec{b}) \cdot \vec{c} + (\vec{b} \times \vec{c}) \cdot \vec{a} + (\vec{c} \times \vec{a}) \cdot \vec{b} \). Thus, we can write: \[ V \vec{r} - \left[(\vec{a} \times \vec{b}) \cdot \vec{r} \, \vec{c} + (\vec{b} \times \vec{c}) \cdot \vec{r} \, \vec{a} + (\vec{c} \times \vec{a}) \cdot \vec{r} \, \vec{b}\right] \] ### Step 5: Final Simplification The expression simplifies to: \[ V \vec{r} - \vec{r} \cdot V \] This leads us to conclude that: \[ = 3(\vec{a} \times \vec{b} \times \vec{c}) \cdot \vec{r} \] ### Final Answer Thus, the final result is: \[ = 2 (\vec{a} \times \vec{b} \times \vec{c}) \]

To solve the problem, we need to evaluate the expression: \[ (\vec{a} \times \vec{b}) \times (\vec{r} \times \vec{c}) + (\vec{b} \times \vec{c}) \times (\vec{r} \times \vec{a}) + (\vec{c} \times \vec{a}) \times (\vec{r} \times \vec{b}) \] where \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are non-coplanar vectors, and \(\vec{r}\) is any vector in space. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecaxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)=

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

Statement 1: Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors. Stetement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then [(veca,vecb, vecc)]vecc+[(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb=[(veca, vecb, vecc)]vecr

vec a , vec ba n d vec c are three non-coplanar ,non-zero vectors and vec r is any vector in space, then ( veca × vecb )×( vecr × vecc )+( vecb × vecc )×( vecr × veca )+( vecc × veca )×( vecr × vecb ) is equal to

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca,vecb and vecc are non coplnar and non zero vectors and vecr is any vector in space then [vecc vecr vecb]veca+[veca vecr vecc] vecb+[vecb vecr veca]c= (A) [veca vecb vecc] (B) [veca vecb vecc]vecr (C) vecr/([veca vecb vecc]) (D) vecr.(veca+vecb+vecc)

If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  2. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  3. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  4. If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb...

    Text Solution

    |

  5. A( vec a),B( vec b)a n dC( vec c) are the vertices of triangle A B ...

    Text Solution

    |

  6. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  7. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  8. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  9. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  10. If the vectors veca and vecb are perpendicular to each other then a ve...

    Text Solution

    |

  11. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  12. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  13. If the unit vectors veca and vecb are inclined of an angle 2 theta ...

    Text Solution

    |

  14. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  15. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  16. veca and vecb are two given vectors. On these vectors as adjacent side...

    Text Solution

    |

  17. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  18. If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,ve...

    Text Solution

    |

  19. a(1), a(2),a(3) in R - {0} and a(1)+ a(2)cos2x+ a(3)sin^(2)x=0 " for ...

    Text Solution

    |

  20. If veca and vecb are two vectors and angle between them is theta , the...

    Text Solution

    |