Home
Class 11
MATHS
If vecp = (vecbxxvecc)/([vecavecbvecc]),...

If `vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc` are three non- coplanar vectors then the value of the expression `(veca + vecb + vecc ). (vecp+ vecq+vecr)` is `(a)3` `(b)2` `(c)1` `(d)0`

A

3

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{p} + \vec{q} + \vec{r})\), where: \[ \vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]}, \quad \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]}, \quad \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]} \] Here, \([\vec{a}, \vec{b}, \vec{c}]\) represents the scalar triple product of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step 1: Understand the Properties of Reciprocal Vectors The vectors \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) are known as the reciprocal vectors of \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). A property of these reciprocal vectors is that: \[ \vec{a} \cdot \vec{p} = 1, \quad \vec{b} \cdot \vec{q} = 1, \quad \vec{c} \cdot \vec{r} = 1 \] And the dot products of the reciprocal vectors with the original vectors yield zero: \[ \vec{a} \cdot \vec{q} = 0, \quad \vec{a} \cdot \vec{r} = 0, \quad \vec{b} \cdot \vec{p} = 0, \quad \vec{b} \cdot \vec{r} = 0, \quad \vec{c} \cdot \vec{p} = 0, \quad \vec{c} \cdot \vec{q} = 0 \] ### Step 2: Evaluate the Expression Now, we can evaluate the expression: \[ (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{p} + \vec{q} + \vec{r}) \] Expanding this using the distributive property of the dot product, we have: \[ = \vec{a} \cdot \vec{p} + \vec{a} \cdot \vec{q} + \vec{a} \cdot \vec{r} + \vec{b} \cdot \vec{p} + \vec{b} \cdot \vec{q} + \vec{b} \cdot \vec{r} + \vec{c} \cdot \vec{p} + \vec{c} \cdot \vec{q} + \vec{c} \cdot \vec{r} \] Using the properties of the reciprocal vectors, we substitute: \[ = 1 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 \] ### Step 3: Simplify the Expression Now, simplifying the above expression gives: \[ = 1 + 1 + 1 = 3 \] ### Conclusion Thus, the value of the expression \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{p} + \vec{q} + \vec{r})\) is: \[ \boxed{3} \]

To solve the problem, we need to evaluate the expression \((\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{p} + \vec{q} + \vec{r})\), where: \[ \vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}, \vec{b}, \vec{c}]}, \quad \vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}, \vec{b}, \vec{c}]}, \quad \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}, \vec{b}, \vec{c}]} \] Here, \([\vec{a}, \vec{b}, \vec{c}]\) represents the scalar triple product of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,vecb,vecc)]),vecr=(vecaxxvecb)/([(veca,vecb,vecb)]) where veca,vecb,vecc are three non-coplanar vectors, then the value of the expression (veca+vecb+vecc).(vecp+vecq+vecr) is

If vecA=(vecbxxvecc)/([vecb vecc veca]), vecB=(veccxxveca)/([vecc veca vecb]), vecC=(vecaxxvecb)/([veca vecb vecc]) find [vecA vecB vecC]

If is given that vecx= (vecbxxvecc)/([veca,vecb,vecc]), vecy=(veccxxveca)/[(veca,vecb,vecc)], vecz=(vecaxxvecb)/[(veca,vecb,vecc)] where veca,vecb,vecc are non coplanar vectors. Find the value of vecx.(veca+vecb)+vecy.(vecc+vecb)+vecz(vecc+veca)

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are vectors defined by the relations vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxveca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr . is equal to (A) 0 (B) 1 (C) 2 (D) 3

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  2. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  3. If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb...

    Text Solution

    |

  4. A( vec a),B( vec b)a n dC( vec c) are the vertices of triangle A B ...

    Text Solution

    |

  5. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  6. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  7. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  8. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  9. If the vectors veca and vecb are perpendicular to each other then a ve...

    Text Solution

    |

  10. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  11. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  12. If the unit vectors veca and vecb are inclined of an angle 2 theta ...

    Text Solution

    |

  13. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  14. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  15. veca and vecb are two given vectors. On these vectors as adjacent side...

    Text Solution

    |

  16. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  17. If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,ve...

    Text Solution

    |

  18. a(1), a(2),a(3) in R - {0} and a(1)+ a(2)cos2x+ a(3)sin^(2)x=0 " for ...

    Text Solution

    |

  19. If veca and vecb are two vectors and angle between them is theta , the...

    Text Solution

    |

  20. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |