Home
Class 11
MATHS
If veca , vecb and vecc are non- coplana...

If `veca , vecb and vecc` are non- coplanar vectors and `veca xx vecc` is perpendicular to `veca xx (vecb xx vecc)` , then the value of `[ veca xx ( vecb xx vecc)] xx vecc` is equal to

A

` [veca vecb vecc] vecc`

B

`[ veca vecb vecc] vecb`

C

` vec0`

D

`[veca vecb vecc] veca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \([ \vec{a} \times ( \vec{b} \times \vec{c}) ] \times \vec{c}\) given that \(\vec{a} \times \vec{c}\) is perpendicular to \(\vec{a} \times (\vec{b} \times \vec{c})\). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We know that \(\vec{a} \times \vec{c}\) is perpendicular to \(\vec{a} \times (\vec{b} \times \vec{c})\). This means: \[ (\vec{a} \times \vec{c}) \cdot (\vec{a} \times (\vec{b} \times \vec{c})) = 0 \] 2. **Using the Vector Triple Product Identity**: We can use the vector triple product identity: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] Here, let \(\vec{u} = \vec{a}\), \(\vec{v} = \vec{b}\), and \(\vec{w} = \vec{c}\). Thus: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] 3. **Substituting into the Dot Product**: Now substituting this into our dot product condition: \[ (\vec{a} \times \vec{c}) \cdot \left[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \right] = 0 \] This expands to: \[ (\vec{a} \times \vec{c}) \cdot ((\vec{a} \cdot \vec{c}) \vec{b}) - (\vec{a} \times \vec{c}) \cdot ((\vec{a} \cdot \vec{b}) \vec{c}) = 0 \] 4. **Analyzing Each Term**: The first term can be simplified: - Since \(\vec{a} \times \vec{c}\) is perpendicular to \(\vec{a}\), the first term becomes zero: \[ (\vec{a} \cdot \vec{c}) \cdot 0 = 0 \] The second term becomes: \[ -(\vec{a} \cdot \vec{b}) (\vec{a} \times \vec{c}) \cdot \vec{c} \] Since \(\vec{a} \times \vec{c}\) is perpendicular to \(\vec{c}\), this term also becomes zero: \[ -(\vec{a} \cdot \vec{b}) \cdot 0 = 0 \] 5. **Conclusion**: Since both terms equal zero, we conclude that: \[ (\vec{a} \cdot \vec{c}) = 0 \quad \text{and} \quad (\vec{a} \cdot \vec{b}) = 0 \] Hence, we can conclude that: \[ [\vec{a} \times (\vec{b} \times \vec{c})] \times \vec{c} = \vec{0} \] ### Final Answer: \[ [\vec{a} \times (\vec{b} \times \vec{c})] \times \vec{c} = \vec{0} \]

To solve the problem, we need to find the value of \([ \vec{a} \times ( \vec{b} \times \vec{c}) ] \times \vec{c}\) given that \(\vec{a} \times \vec{c}\) is perpendicular to \(\vec{a} \times (\vec{b} \times \vec{c})\). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We know that \(\vec{a} \times \vec{c}\) is perpendicular to \(\vec{a} \times (\vec{b} \times \vec{c})\). This means: \[ (\vec{a} \times \vec{c}) \cdot (\vec{a} \times (\vec{b} \times \vec{c})) = 0 ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc , we may have

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a non -zero , which is perpendicular to (veca + vecb + vecc). Now vecd = (veca xx vecb) sin x + (vecb xx vecc) cos y + 2 (vecc xx veca) . Then

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

Let veca,vecb,vecc be three non coplanar and vecd be a vector which is perpendicular to veca + vecb + vecc . If vecd = xvecb xx vecc + yvecc xx veca + zveca xx vecb the-

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is

Let |veca| = 3, |vecb| = 5, vecb.vecc= 10 , angle between vecb and vecc equal to pi/3 . If veca is perpendicular vecb xx vecc then find the value of |veca xx (vecb xx vecc)|

If vectors, vecb, vecc and vecd are not coplanar, the prove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If vecp = (vecbxxvecc)/([vecavecbvecc]), vecq=(veccxxveca)/([veca vecb...

    Text Solution

    |

  2. A( vec a),B( vec b)a n dC( vec c) are the vertices of triangle A B ...

    Text Solution

    |

  3. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  4. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  5. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  6. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  7. If the vectors veca and vecb are perpendicular to each other then a ve...

    Text Solution

    |

  8. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  9. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  10. If the unit vectors veca and vecb are inclined of an angle 2 theta ...

    Text Solution

    |

  11. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  12. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  13. veca and vecb are two given vectors. On these vectors as adjacent side...

    Text Solution

    |

  14. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  15. If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,ve...

    Text Solution

    |

  16. a(1), a(2),a(3) in R - {0} and a(1)+ a(2)cos2x+ a(3)sin^(2)x=0 " for ...

    Text Solution

    |

  17. If veca and vecb are two vectors and angle between them is theta , the...

    Text Solution

    |

  18. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  19. If vector vec b=(t a nalpha,-1,2sqrt(sinalpha//2))a n d vec c=(t a na...

    Text Solution

    |

  20. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |