Home
Class 11
MATHS
[(veca xxvecb)xx(vecb xx vecc) ...

`[(veca xxvecb)xx(vecb xx vecc)` `(vecb xxvecc) xx (vecc xxveca) ` ` (veccxxveca) xx (veca xx vecb)]` is equal to ( where `veca, vecb and vecc` are non - zero non- colanar vectors). `(a) [veca vecb vecc] ^(2)` `(b)[veca vecb vecc] ^(3)` `(c)[veca vecb vecc] ^(4)` `(d)[veca vecb vecc]`

A

` [veca vecb vecc] ^(2)`

B

`[veca vecb vecc] ^(3)`

C

`[veca vecb vecc] ^(4)`

D

`[veca vecb vecc]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ [(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})] + [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})] + [(\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})] \] where \(\vec{a}, \vec{b}, \vec{c}\) are non-zero, non-coplanar vectors. ### Step 1: Evaluate the first term \((\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})\) Using the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Let \(\vec{x} = \vec{a}\), \(\vec{y} = \vec{b}\), \(\vec{z} = \vec{c}\): \[ (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] ### Step 2: Evaluate the second term \((\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})\) Using the same identity: Let \(\vec{x} = \vec{b}\), \(\vec{y} = \vec{c}\), \(\vec{z} = \vec{a}\): \[ (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = (\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a} \] ### Step 3: Evaluate the third term \((\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})\) Again using the identity: Let \(\vec{x} = \vec{c}\), \(\vec{y} = \vec{a}\), \(\vec{z} = \vec{b}\): \[ (\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b}) = (\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b} \] ### Step 4: Combine all three terms Now we can combine the results from Steps 1, 2, and 3: \[ [(\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}] + [(\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a}] + [(\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b}] \] ### Step 5: Simplify the expression Combining like terms, we get: \[ [(\vec{a} \cdot \vec{c}) \vec{b} + (\vec{b} \cdot \vec{a}) \vec{c} + (\vec{c} \cdot \vec{b}) \vec{a}] - [(\vec{a} \cdot \vec{b}) \vec{c} + (\vec{b} \cdot \vec{c}) \vec{a} + (\vec{c} \cdot \vec{a}) \vec{b}] \] This can be rearranged to show that the entire expression can be factored out as a scalar triple product. ### Step 6: Final Result The final result of the expression is: \[ [\vec{a} \vec{b} \vec{c}]^3 \] Thus, the answer is: \[ \text{(b) } [\vec{a} \vec{b} \vec{c}]^3 \]

To solve the problem, we need to evaluate the expression: \[ [(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})] + [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})] + [(\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})] \] where \(\vec{a}, \vec{b}, \vec{c}\) are non-zero, non-coplanar vectors. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .vecb) vecb = ( 4-2x- sin y) vecb + ( x^(2) -1) vecc andd (vec. vecc) veca =veca then

If vecA,vecB and vecC are three non coplanar then (vecA+vecB+vecC).{(vecA+vecB)xx(vecA+vecC)} equals: (A) 0 (B) [vecA vecB vecC] (C) 2[vecA vecB vecC] (D) -[vecA vecB vecC]

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  2. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |

  3. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  4. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  5. If the vectors veca and vecb are perpendicular to each other then a ve...

    Text Solution

    |

  6. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  7. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  8. If the unit vectors veca and vecb are inclined of an angle 2 theta ...

    Text Solution

    |

  9. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  10. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  11. veca and vecb are two given vectors. On these vectors as adjacent side...

    Text Solution

    |

  12. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  13. If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,ve...

    Text Solution

    |

  14. a(1), a(2),a(3) in R - {0} and a(1)+ a(2)cos2x+ a(3)sin^(2)x=0 " for ...

    Text Solution

    |

  15. If veca and vecb are two vectors and angle between them is theta , the...

    Text Solution

    |

  16. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  17. If vector vec b=(t a nalpha,-1,2sqrt(sinalpha//2))a n d vec c=(t a na...

    Text Solution

    |

  18. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  19. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  20. If veca and vecb are two unit vectors perpenicualar to each other and ...

    Text Solution

    |