Home
Class 11
MATHS
If the vectors veca and vecb are perpend...

If the vectors `veca` and `vecb` are perpendicular to each other then a vector `vecv` in terms of `veca` and `vecb` satisfying the equations `vecv.veca=0, vecv.vecb=1` and `[(vecv, veca, vecb)]=1` is

A

`(vecb)/(|vecb|^(2))+ (vecaxx vecb)/(|vecaxxvecb|^(2))`

B

`(vecb)/(|vecb|)+ (vecaxx vecb)/(|vecaxxvecb|^(2))`

C

`(vecb)/(|vecb|)+ (vecaxx vecb)/(|vecaxxvecb|)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a vector \(\vec{v}\) in terms of vectors \(\vec{a}\) and \(\vec{b}\) that satisfies the following conditions: 1. \(\vec{v} \cdot \vec{a} = 0\) 2. \(\vec{v} \cdot \vec{b} = 1\) 3. \([\vec{v}, \vec{a}, \vec{b}] = 1\) Given that \(\vec{a}\) and \(\vec{b}\) are perpendicular, we can proceed as follows: ### Step 1: Understand the implications of the conditions Since \(\vec{a}\) and \(\vec{b}\) are perpendicular, we know that: \[ \vec{a} \cdot \vec{b} = 0 \] This means that the dot product of \(\vec{v}\) with \(\vec{a}\) being zero indicates that \(\vec{v}\) is perpendicular to \(\vec{a}\). ### Step 2: Express \(\vec{v}\) in terms of \(\vec{a}\) and \(\vec{b}\) Since \(\vec{v}\) is perpendicular to \(\vec{a}\), we can express \(\vec{v}\) as a linear combination of \(\vec{b}\) and a vector that is perpendicular to both \(\vec{a}\) and \(\vec{b}\). We can write: \[ \vec{v} = x \vec{b} + y (\vec{a} \times \vec{b}) \] where \(x\) and \(y\) are scalars. ### Step 3: Apply the second condition \(\vec{v} \cdot \vec{b} = 1\) Now, we substitute \(\vec{v}\) into the second condition: \[ \vec{v} \cdot \vec{b} = (x \vec{b} + y (\vec{a} \times \vec{b})) \cdot \vec{b} = x (\vec{b} \cdot \vec{b}) + y ((\vec{a} \times \vec{b}) \cdot \vec{b}) \] Since \((\vec{a} \times \vec{b})\) is perpendicular to \(\vec{b}\), we have: \[ (\vec{a} \times \vec{b}) \cdot \vec{b} = 0 \] Thus, the equation simplifies to: \[ x |\vec{b}|^2 = 1 \implies x = \frac{1}{|\vec{b}|^2} \] ### Step 4: Substitute \(x\) back into \(\vec{v}\) Now we can substitute \(x\) back into the expression for \(\vec{v}\): \[ \vec{v} = \frac{1}{|\vec{b}|^2} \vec{b} + y (\vec{a} \times \vec{b}) \] ### Step 5: Apply the third condition \([\vec{v}, \vec{a}, \vec{b}] = 1\) The scalar triple product \([\vec{v}, \vec{a}, \vec{b}]\) can be computed as: \[ [\vec{v}, \vec{a}, \vec{b}] = \left(\frac{1}{|\vec{b}|^2} \vec{b} + y (\vec{a} \times \vec{b}), \vec{a}, \vec{b}\right) \] Calculating this gives: \[ [\vec{v}, \vec{a}, \vec{b}] = \frac{1}{|\vec{b}|^2} [\vec{b}, \vec{a}, \vec{b}] + y [(\vec{a} \times \vec{b}), \vec{a}, \vec{b}] \] The first term is zero because \([\vec{b}, \vec{a}, \vec{b}] = 0\). The second term simplifies to: \[ y |\vec{a}| |\vec{b}| \sin(\theta) = y |\vec{a}| |\vec{b}| \] where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). Since \(\vec{a}\) and \(\vec{b}\) are perpendicular, \(\sin(\theta) = 1\). Setting this equal to 1 gives: \[ y |\vec{a}| |\vec{b}| = 1 \implies y = \frac{1}{|\vec{a}| |\vec{b}|} \] ### Final Expression for \(\vec{v}\) Substituting \(y\) back into the expression for \(\vec{v}\): \[ \vec{v} = \frac{1}{|\vec{b}|^2} \vec{b} + \frac{1}{|\vec{a}| |\vec{b}|} (\vec{a} \times \vec{b}) \] This is the required vector \(\vec{v}\).

To solve the problem, we need to find a vector \(\vec{v}\) in terms of vectors \(\vec{a}\) and \(\vec{b}\) that satisfies the following conditions: 1. \(\vec{v} \cdot \vec{a} = 0\) 2. \(\vec{v} \cdot \vec{b} = 1\) 3. \([\vec{v}, \vec{a}, \vec{b}] = 1\) Given that \(\vec{a}\) and \(\vec{b}\) are perpendicular, we can proceed as follows: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If non-zero vectors veca and vecb are perpendicular to each other, then the solution of the equation vecr × veca = vecb is given by

If the vectors veca and vecb are mutually perpendicular, then veca xx {veca xx {veca xx {veca xx vecb}} is equal to:

If veca an vecb are perpendicular vectors, |veca+vecb|=13 and |veca|=5 , find the value of |vecb| .

If veca and vecb be two non collinear vectors such that veca=vecc+vecd , where vecc is parallel to vecb and vecd is perpendicular to vecb obtain expression for vecc and vecd in terms of veca and vecb as: vecd= veca- ((veca.vecb)vecb)/b^2,vecc= ((veca.vecb)vecb)/b^2

If veca and vecb are mutually perpendicular unit vectors, vecr is a vector satisfying vecr.veca =0, vecr.vecb=1 and (vecr veca vecb)=1 , then vecr is:

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

Three vectors vecA, vecB and vecC satisfy the relation vecA. vecB=0 and vecA. vecC=0. The vector vecA is parallel to

If veca,vecb are vectors perpendicular to each other and |veca|=2, |vecb|=3, vecc xx veca=vecb , then the least value of 2|vecc-veca| is

The vector (veca.vecb)vecc-(veca.vecc)vecb is perpendicular to

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. [(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca)...

    Text Solution

    |

  2. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  3. If the vectors veca and vecb are perpendicular to each other then a ve...

    Text Solution

    |

  4. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  5. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  6. If the unit vectors veca and vecb are inclined of an angle 2 theta ...

    Text Solution

    |

  7. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  8. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  9. veca and vecb are two given vectors. On these vectors as adjacent side...

    Text Solution

    |

  10. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  11. If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,ve...

    Text Solution

    |

  12. a(1), a(2),a(3) in R - {0} and a(1)+ a(2)cos2x+ a(3)sin^(2)x=0 " for ...

    Text Solution

    |

  13. If veca and vecb are two vectors and angle between them is theta , the...

    Text Solution

    |

  14. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  15. If vector vec b=(t a nalpha,-1,2sqrt(sinalpha//2))a n d vec c=(t a na...

    Text Solution

    |

  16. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  17. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  18. If veca and vecb are two unit vectors perpenicualar to each other and ...

    Text Solution

    |

  19. If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|v...

    Text Solution

    |

  20. If veca and vecb are non - zero vectors such that |veca + vecb| = |vec...

    Text Solution

    |