Home
Class 11
MATHS
If veca' = hati + hatj, vecb'= hati - ha...

If `veca' = hati + hatj, vecb'= hati - hatj + 2hatk` and `vecc' = 2hati - hatj - hatk` then the altitude of the parallelepiped formed by the vectors, `veca, vecb and vecc` having base formed by `vecb and vecc` is ( where `veca'` is recipocal vector `veca) ` `(a)1` `(b)3sqrt2//2` `(c)1//sqrt6` `(d)1//sqrt2`

A

1

B

`3sqrt2//2`

C

`1//sqrt6`

D

`1//sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the altitude of the parallelepiped formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + \hat{j} \] \[ \vec{b} = \hat{i} - \hat{j} + 2\hat{k} \] \[ \vec{c} = 2\hat{i} - \hat{j} - \hat{k} \] ### Step 2: Calculate the scalar triple product \(\vec{a} \cdot (\vec{b} \times \vec{c})\) The volume \(V\) of the parallelepiped can be calculated using the scalar triple product: \[ V = \vec{a} \cdot (\vec{b} \times \vec{c}) \] ### Step 3: Calculate \(\vec{b} \times \vec{c}\) To find \(\vec{b} \times \vec{c}\), we can use the determinant of a matrix formed by the unit vectors and the components of \(\vec{b}\) and \(\vec{c}\): \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 2 & -1 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -1 & 2 \\ -1 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ 2 & -1 \end{vmatrix} \] Calculating the minors: \[ = \hat{i}((-1)(-1) - (2)(-1)) - \hat{j}((1)(-1) - (2)(2)) + \hat{k}((1)(-1) - (-1)(2)) \] \[ = \hat{i}(1 + 2) - \hat{j}(-1 - 4) + \hat{k}(-1 + 2) \] \[ = 3\hat{i} + 5\hat{j} + 1\hat{k} \] So, \[ \vec{b} \times \vec{c} = 3\hat{i} + 5\hat{j} + 1\hat{k} \] ### Step 4: Calculate the magnitude of \(\vec{b} \times \vec{c}\) \[ |\vec{b} \times \vec{c}| = \sqrt{3^2 + 5^2 + 1^2} = \sqrt{9 + 25 + 1} = \sqrt{35} \] ### Step 5: Calculate \(\vec{a} \cdot (\vec{b} \times \vec{c})\) Now we compute: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = (\hat{i} + \hat{j}) \cdot (3\hat{i} + 5\hat{j} + 1\hat{k}) \] \[ = 1 \cdot 3 + 1 \cdot 5 + 0 \cdot 1 = 3 + 5 = 8 \] ### Step 6: Calculate the altitude The altitude \(h\) of the parallelepiped is given by: \[ h = \frac{V}{|\vec{b} \times \vec{c}|} = \frac{8}{\sqrt{35}} \] ### Step 7: Find the correct option Now we check the options provided: - (a) 1 - (b) \(\frac{3\sqrt{2}}{2}\) - (c) \(\frac{1}{\sqrt{6}}\) - (d) \(\frac{1}{\sqrt{2}}\) None of the options match our calculated altitude. ### Conclusion The altitude of the parallelepiped formed by the vectors is \(\frac{8}{\sqrt{35}}\), which does not match any of the provided options.

To find the altitude of the parallelepiped formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} + \hat{j} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hatj-2hatk , then the volume of the parallelopiped with coterminous edges veca+vecb,vecb+vecc,vecc+veca is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

The vectors are given below veca = hati + 2hatj +3hatk vecb = 2hati + 4hatj + 6hatk and vecc = 3hati + 6hatj + 9 hatk find the components of the vector veca + vecb -vecc

If vecA= hati+2hatj+3hatk, vecB=-hati+hatj + 4hatk and vecC= 3hati-3hatj-12hatk , then find the angle between the vector (vecA+vecB+vecC) and (vecAxx vecB) in degrees.

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If vecr=x(1)(vecaxx vecb) + x(2) (vecb xxveca) + x(3)(vecc xxvecd) and...

    Text Solution

    |

  2. If the vectors veca and vecb are perpendicular to each other then a ve...

    Text Solution

    |

  3. If veca' = hati + hatj, vecb'= hati - hatj + 2hatk and vecc' = 2hati -...

    Text Solution

    |

  4. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  5. If the unit vectors veca and vecb are inclined of an angle 2 theta ...

    Text Solution

    |

  6. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  7. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  8. veca and vecb are two given vectors. On these vectors as adjacent side...

    Text Solution

    |

  9. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  10. If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,ve...

    Text Solution

    |

  11. a(1), a(2),a(3) in R - {0} and a(1)+ a(2)cos2x+ a(3)sin^(2)x=0 " for ...

    Text Solution

    |

  12. If veca and vecb are two vectors and angle between them is theta , the...

    Text Solution

    |

  13. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  14. If vector vec b=(t a nalpha,-1,2sqrt(sinalpha//2))a n d vec c=(t a na...

    Text Solution

    |

  15. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  16. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  17. If veca and vecb are two unit vectors perpenicualar to each other and ...

    Text Solution

    |

  18. If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|v...

    Text Solution

    |

  19. If veca and vecb are non - zero vectors such that |veca + vecb| = |vec...

    Text Solution

    |

  20. Let veca vecb and vecc be non- zero vectors aned vecV(1) =veca xx (vec...

    Text Solution

    |