Home
Class 11
MATHS
vecb and vecc are non- collinear if veca...

`vecb and vecc` are non- collinear if `veca xx (vecb xx vecc) + (veca .vecb) vecb = ( 4-2x- sin y) vecb + ( x^(2) -1) vecc andd (vec. vecc) veca =veca ` then

A

x =1

B

x = -1

C

`y = (4 n+1) pi/2, n in I `

D

`y ( 2n + 1) pi/2, n in I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given vector equation and derive the necessary conditions for the vectors to be non-collinear. ### Given: 1. \( \vec{b} \) and \( \vec{c} \) are non-collinear vectors. 2. The equation is: \[ \vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b}) \vec{b} = (4 - 2x - \sin y) \vec{b} + (x^2 - 1) \vec{c} \] 3. Another condition is: \[ (\vec{c} \cdot \vec{c}) \vec{a} = \vec{c} \] ### Step 1: Rewrite the Cross Product Using the vector triple product identity, we can rewrite \( \vec{a} \times (\vec{b} \times \vec{c}) \): \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] Substituting this into the equation gives: \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} + (\vec{a} \cdot \vec{b}) \vec{b} = (4 - 2x - \sin y) \vec{b} + (x^2 - 1) \vec{c} \] ### Step 2: Combine Like Terms Now, combine the terms: \[ (\vec{a} \cdot \vec{c}) \vec{b} + (\vec{a} \cdot \vec{b}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = (4 - 2x - \sin y) \vec{b} + (x^2 - 1) \vec{c} \] This simplifies to: \[ \left((\vec{a} \cdot \vec{c}) + (\vec{a} \cdot \vec{b})\right) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = (4 - 2x - \sin y) \vec{b} + (x^2 - 1) \vec{c} \] ### Step 3: Compare Coefficients Now, we can compare coefficients of \( \vec{b} \) and \( \vec{c} \): 1. Coefficient of \( \vec{b} \): \[ (\vec{a} \cdot \vec{c}) + (\vec{a} \cdot \vec{b}) = 4 - 2x - \sin y \] 2. Coefficient of \( \vec{c} \): \[ -(\vec{a} \cdot \vec{b}) = x^2 - 1 \] ### Step 4: Solve for \( \vec{a} \cdot \vec{b} \) From the coefficient of \( \vec{c} \): \[ \vec{a} \cdot \vec{b} = 1 - x^2 \] Substituting this into the coefficient of \( \vec{b} \): \[ (\vec{a} \cdot \vec{c}) + (1 - x^2) = 4 - 2x - \sin y \] Thus, \[ \vec{a} \cdot \vec{c} = 4 - 2x - \sin y - (1 - x^2) \] This simplifies to: \[ \vec{a} \cdot \vec{c} = 3 - 2x + x^2 - \sin y \] ### Step 5: Use the Second Condition Using the second condition \( (\vec{c} \cdot \vec{c}) \vec{a} = \vec{c} \), we can multiply both sides by \( \vec{c} \): \[ (\vec{c} \cdot \vec{c})(\vec{a} \cdot \vec{c}) = \vec{c} \cdot \vec{c} \] Assuming \( \vec{c} \cdot \vec{c} \neq 0 \), we can divide both sides by \( \vec{c} \cdot \vec{c} \): \[ \vec{a} \cdot \vec{c} = 1 \] ### Step 6: Set Up the Equation Now we have: \[ 3 - 2x + x^2 - \sin y = 1 \] This simplifies to: \[ x^2 - 2x + 2 - \sin y = 0 \] Rearranging gives: \[ \sin y = x^2 - 2x + 2 \] ### Step 7: Analyze the Expression The expression \( x^2 - 2x + 2 \) is always greater than or equal to 1 (as it is a quadratic that opens upwards). Thus, for \( \sin y \) to be valid, we need: \[ x^2 - 2x + 2 \leq 1 \] This leads to: \[ x^2 - 2x + 1 \leq 0 \implies (x - 1)^2 \leq 0 \] This implies \( x = 1 \). ### Step 8: Find \( y \) Substituting \( x = 1 \) into the equation for \( \sin y \): \[ \sin y = 1^2 - 2(1) + 2 = 1 \] Thus, \( y = \frac{\pi}{2} + 2n\pi \) for \( n \in \mathbb{Z} \). ### Final Answer The values of \( x \) and \( y \) that satisfy the conditions are: - \( x = 1 \) - \( y = \frac{\pi}{2} + 2n\pi \) for \( n \in \mathbb{Z} \)

To solve the problem step by step, we will analyze the given vector equation and derive the necessary conditions for the vectors to be non-collinear. ### Given: 1. \( \vec{b} \) and \( \vec{c} \) are non-collinear vectors. 2. The equation is: \[ \vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b}) \vec{b} = (4 - 2x - \sin y) \vec{b} + (x^2 - 1) \vec{c} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

The value of veca.(vecb+vecc)xx(veca+vecb+vecc) , is

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

Let vecb and vecc be non-collinear vectors. If veca is a vector such that veca.(vecb + vecc)=4 and veca xx (vecb xx vecc)=(x^(2) - 2x + 6)vecb + sin y.vecc , then (x,y) lies on the line:

Let veca vecb and vecc be non- zero vectors aned vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc .vectors vecV_(1) and vecV_(2) are equal . Then

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

[(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca) (veccxxveca) xx (veca xx vecb)] is equal to ( where veca, vecb and vecc are non - zero non- colanar vectors). (a) [veca vecb vecc] ^(2) (b)[veca vecb vecc] ^(3) (c)[veca vecb vecc] ^(4) (d)[veca vecb vecc]

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in th...

    Text Solution

    |

  2. If the unit vectors veca and vecb are inclined of an angle 2 theta ...

    Text Solution

    |

  3. vecb and vecc are non- collinear if veca xx (vecb xx vecc) + (veca .ve...

    Text Solution

    |

  4. Let veca.vecb=0 where veca and vecb are unit vectors and the vector ve...

    Text Solution

    |

  5. veca and vecb are two given vectors. On these vectors as adjacent side...

    Text Solution

    |

  6. If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc...

    Text Solution

    |

  7. If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,ve...

    Text Solution

    |

  8. a(1), a(2),a(3) in R - {0} and a(1)+ a(2)cos2x+ a(3)sin^(2)x=0 " for ...

    Text Solution

    |

  9. If veca and vecb are two vectors and angle between them is theta , the...

    Text Solution

    |

  10. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  11. If vector vec b=(t a nalpha,-1,2sqrt(sinalpha//2))a n d vec c=(t a na...

    Text Solution

    |

  12. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  13. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  14. If veca and vecb are two unit vectors perpenicualar to each other and ...

    Text Solution

    |

  15. If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|v...

    Text Solution

    |

  16. If veca and vecb are non - zero vectors such that |veca + vecb| = |vec...

    Text Solution

    |

  17. Let veca vecb and vecc be non- zero vectors aned vecV(1) =veca xx (vec...

    Text Solution

    |

  18. Vectors vecA and vecB satisfying the vector equation vecA+ vecB = vec...

    Text Solution

    |

  19. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  20. Vectors perpendicular tohati-hatj-hatk and in the plane of hati+hatj+h...

    Text Solution

    |