Home
Class 11
MATHS
If vector vec b=(t a nalpha,-1,2sqrt(si...

If vector ` vec b=(t a nalpha,-1,2sqrt(sinalpha//2))a n d vec c=(t a nalpha, t a nalpha, -3/(sqrt(sinalpha//2)))` are orthogonal and vector ` vec a=(1,3,sin2alpha)` makes an obtuse angle with the z-axis, then the value of `alpha` is `a. alpha=(4n+1)pi+tan^(-1)2` `b. alpha=(4n+1)pi-tan^(-1)2` `c. alpha=(4n+2)pi+tan^(-1)2` `d. alpha=(4n+2)pi-tan^(-1)2`

A

`alpha= ( 4n+1 ) pi + tan^(-1) 2`

B

`alpha= ( 4n+1 ) pi - tan^(-1) 2`

C

`alpha= ( 4n+2 ) pi + tan^(-1) 2`

D

`alpha= ( 4n+2 ) pi - tan^(-1) 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given vectors and their properties. ### Step 1: Define the vectors We have: - \( \vec{b} = (\tan \alpha, -1, 2\sqrt{\frac{\sin \alpha}{2}}) \) - \( \vec{c} = (\tan \alpha, \tan \alpha, -\frac{3}{\sqrt{\frac{\sin \alpha}{2}}}) \) - \( \vec{a} = (1, 3, \sin 2\alpha) \) ### Step 2: Use the orthogonality condition Since vectors \( \vec{b} \) and \( \vec{c} \) are orthogonal, their dot product must equal zero: \[ \vec{b} \cdot \vec{c} = 0 \] Calculating the dot product: \[ (\tan \alpha)(\tan \alpha) + (-1)(\tan \alpha) + \left(2\sqrt{\frac{\sin \alpha}{2}}\right)\left(-\frac{3}{\sqrt{\frac{\sin \alpha}{2}}}\right) = 0 \] This simplifies to: \[ \tan^2 \alpha - \tan \alpha - 6 = 0 \] ### Step 3: Solve the quadratic equation Now we can factor the quadratic: \[ (\tan \alpha - 3)(\tan \alpha + 2) = 0 \] Thus, we have two solutions: \[ \tan \alpha = 3 \quad \text{or} \quad \tan \alpha = -2 \] ### Step 4: Find the angles From \( \tan \alpha = 3 \): \[ \alpha = n\pi + \tan^{-1}(3) \] From \( \tan \alpha = -2 \): \[ \alpha = n\pi - \tan^{-1}(2) \] ### Step 5: Analyze the angle with the z-axis The vector \( \vec{a} \) makes an obtuse angle with the z-axis, which means: \[ \vec{a} \cdot \hat{k} < 0 \] Calculating the dot product with the unit vector in the z-direction \( \hat{k} = (0, 0, 1) \): \[ \sin 2\alpha < 0 \] This implies: \[ 2\alpha \in (2m-1)\pi \text{ to } 2m\pi \quad \Rightarrow \quad \alpha \in \left(\frac{(2m-1)\pi}{2}, m\pi\right) \] This indicates that \( \alpha \) is in the second or fourth quadrant. ### Step 6: Find the intersection of ranges We need to find the intersection of the ranges from the solutions of \( \tan \alpha \) and the angle condition: - From \( \tan \alpha = 3 \): \( \alpha = n\pi + \tan^{-1}(3) \) - From \( \tan \alpha = -2 \): \( \alpha = n\pi - \tan^{-1}(2) \) ### Step 7: Determine the valid solutions Considering the ranges: 1. \( n\pi + \tan^{-1}(3) \) does not satisfy the obtuse angle condition. 2. \( n\pi - \tan^{-1}(2) \) can satisfy the condition for certain values of \( n \). Thus, we conclude: \[ \alpha = n\pi - \tan^{-1}(2) \] This can be expressed in the forms: - \( \alpha = (4n + 1)\pi - \tan^{-1}(2) \) - \( \alpha = (4n + 2)\pi - \tan^{-1}(2) \) ### Final Answer The values of \( \alpha \) are: - \( \alpha = (4n + 1)\pi - \tan^{-1}(2) \) (Option b) - \( \alpha = (4n + 2)\pi - \tan^{-1}(2) \) (Option d)

To solve the problem step by step, we will analyze the given vectors and their properties. ### Step 1: Define the vectors We have: - \( \vec{b} = (\tan \alpha, -1, 2\sqrt{\frac{\sin \alpha}{2}}) \) - \( \vec{c} = (\tan \alpha, \tan \alpha, -\frac{3}{\sqrt{\frac{\sin \alpha}{2}}}) \) - \( \vec{a} = (1, 3, \sin 2\alpha) \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

The value of tan alpha +2tan(2alpha)+4tan(4alpha)+...+2^(n-1)tan(2^(n-1)alpha)+2^ncot(2^nalpha) is

If u=cot^(-1)sqrt(tanalpha)-tan^(-1)sqrt(tanalpha),t h e n tan(pi/4- u/2) is (a) sqrt(tanalpha) (b) sqrt(cotalpha) (c) tanalpha (d) cot alpha

If 0 lt alpha lt (pi)/(16) and (1+tan alpha)(1+tan4alpha)=2 , then the value of alpha is equal to

If t a nbeta=(nsinalphacosalpha)/(1-nsin^2alpha) , show that tan(alpha-beta)=(1-n)t a nalphadot

If t a nbeta=(nsinalphacosalpha)/(1-nsin^2alpha) , show that tan(alpha-beta)=(1-n)t a nalphadot

If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) is equal to (a) sqrt(tan alpha) (b) sqrt(cos alpha) (c) tan alpha (d) cot alpha

If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) is equal to (a) sqrt(tan alpha) (b) sqrt(cos alpha) (c) tan alpha (d) cot alpha

If sin theta = n sin ( theta + 2 alpha ) , show that ( n -1) tan (theta + alpha ) + (n + 1) tan alpha = 0 .

If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

If 2|sin2alpha|=|tanbeta+cotbeta|,alpha,beta in (pi/2,pi), then the value of alpha+beta is (a) (3pi)/4 (b) pi (c) (3pi)/2 (d) (5pi)/4

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If veca and vecb are two vectors and angle between them is theta , the...

    Text Solution

    |

  2. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  3. If vector vec b=(t a nalpha,-1,2sqrt(sinalpha//2))a n d vec c=(t a na...

    Text Solution

    |

  4. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  5. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  6. If veca and vecb are two unit vectors perpenicualar to each other and ...

    Text Solution

    |

  7. If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|v...

    Text Solution

    |

  8. If veca and vecb are non - zero vectors such that |veca + vecb| = |vec...

    Text Solution

    |

  9. Let veca vecb and vecc be non- zero vectors aned vecV(1) =veca xx (vec...

    Text Solution

    |

  10. Vectors vecA and vecB satisfying the vector equation vecA+ vecB = vec...

    Text Solution

    |

  11. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  12. Vectors perpendicular tohati-hatj-hatk and in the plane of hati+hatj+h...

    Text Solution

    |

  13. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  14. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  15. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  16. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  17. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  18. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  19. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  20. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |