Home
Class 11
MATHS
Let vecr be a unit vector satisfying vec...

Let `vecr` be a unit vector satisfying `vecr xx veca = vecb, " where " |veca|= sqrt3 and |vecb| = sqrt2`, then `(a)vecr= 2/3(veca+ veca xx vecb)` (b)`vecr= 1/3(veca+ veca xx vecb)` (c)`vecr= 2/3(veca- veca xx vecb)` (d)`vecr= 1/3(-veca+ veca xx vecb)`

A

`vecr= 2/3(veca+ veca xx vecb)`

B

`vecr= 1/3(veca+ veca xx vecb)`

C

`vecr= 2/3(veca- veca xx vecb)`

D

`vecr= 1/3(-veca+ veca xx vecb)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps systematically: 1. **Understanding the Given Information**: We have a unit vector \(\vec{r}\) such that: \[ \vec{r} \times \vec{a} = \vec{b} \] with magnitudes: \[ |\vec{a}| = \sqrt{3}, \quad |\vec{b}| = \sqrt{2}, \quad |\vec{r}| = 1 \] 2. **Taking Magnitudes**: Taking the magnitude of both sides of the equation \(\vec{r} \times \vec{a} = \vec{b}\): \[ |\vec{r}||\vec{a}|\sin\theta = |\vec{b}| \] Substituting the known magnitudes: \[ 1 \cdot \sqrt{3} \cdot \sin\theta = \sqrt{2} \] This simplifies to: \[ \sqrt{3} \sin\theta = \sqrt{2} \] Thus: \[ \sin\theta = \frac{\sqrt{2}}{\sqrt{3}} = \sqrt{\frac{2}{3}} \] 3. **Finding \(\cos\theta\)**: We can find \(\cos\theta\) using the Pythagorean identity: \[ \cos^2\theta + \sin^2\theta = 1 \] Substituting \(\sin^2\theta\): \[ \cos^2\theta + \frac{2}{3} = 1 \] Therefore: \[ \cos^2\theta = 1 - \frac{2}{3} = \frac{1}{3} \] Thus: \[ \cos\theta = \pm \frac{1}{\sqrt{3}} \] 4. **Using the Triple Product**: We can use the vector triple product identity: \[ \vec{a} \times (\vec{r} \times \vec{a}) = (\vec{a} \cdot \vec{a}) \vec{r} - (\vec{a} \cdot \vec{r}) \vec{a} \] Substituting \(\vec{r} \times \vec{a} = \vec{b}\): \[ \vec{a} \times \vec{b} = 3\vec{r} - (\vec{a} \cdot \vec{r}) \vec{a} \] 5. **Calculating \(\vec{a} \cdot \vec{r}\)**: We know: \[ \vec{a} \cdot \vec{r} = |\vec{a}||\vec{r}|\cos\theta = \sqrt{3} \cdot 1 \cdot \left(\pm \frac{1}{\sqrt{3}}\right) = \pm 1 \] 6. **Substituting Back**: Substituting back into the equation: \[ \vec{a} \times \vec{b} = 3\vec{r} - (\pm 1) \vec{a} \] Rearranging gives: \[ 3\vec{r} = \vec{a} \times \vec{b} + \vec{a} \quad \text{or} \quad 3\vec{r} = \vec{a} \times \vec{b} - \vec{a} \] Thus: \[ \vec{r} = \frac{1}{3}(\vec{a} \times \vec{b} \pm \vec{a}) \] 7. **Final Expression**: Therefore, the possible values for \(\vec{r}\) are: \[ \vec{r} = \frac{1}{3}(\vec{a} + \vec{a} \times \vec{b}) \quad \text{or} \quad \vec{r} = \frac{1}{3}(-\vec{a} + \vec{a} \times \vec{b}) \] 8. **Checking Options**: From the options provided, we see that: - (b) \(\vec{r} = \frac{1}{3}(\vec{a} + \vec{a} \times \vec{b})\) - (d) \(\vec{r} = \frac{1}{3}(-\vec{a} + \vec{a} \times \vec{b})\) Thus, the correct answers are options (b) and (d).

To solve the problem, we will follow these steps systematically: 1. **Understanding the Given Information**: We have a unit vector \(\vec{r}\) such that: \[ \vec{r} \times \vec{a} = \vec{b} \] with magnitudes: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

A vectors vecr satisfies the equations vecr xx veca=vecb and vecr*veca=0 . Then

The plane contaning the two straight lines vecr=veca+lamda vecb and vecr=vecb+muveca is (A) [vecr veca vecb]=0 (B) [vecr veca veca xxvecb]=0 (C) [vecr vecb vecaxxvecb]=0 (D) [vecr veca+vecb vecaxxvecb]=0

if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 then (a) |veca|= |vecc| (b) |veca|= |vecb| (c) |vecb|=1 (d) |veca|=|vecb|= |vecc|=1

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

Find vecr such that tvecr+vecr+veca=vecb .

Prove that : veca*(vecb+vec c)xx(veca+2vecb+3vec c)=[veca vecb vec c]

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

Prove that: |(veca+vecb)xx(veca-vecb)|=2ab if veca_|_vecb

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  2. If vector vec b=(t a nalpha,-1,2sqrt(sinalpha//2))a n d vec c=(t a na...

    Text Solution

    |

  3. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  4. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  5. If veca and vecb are two unit vectors perpenicualar to each other and ...

    Text Solution

    |

  6. If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|v...

    Text Solution

    |

  7. If veca and vecb are non - zero vectors such that |veca + vecb| = |vec...

    Text Solution

    |

  8. Let veca vecb and vecc be non- zero vectors aned vecV(1) =veca xx (vec...

    Text Solution

    |

  9. Vectors vecA and vecB satisfying the vector equation vecA+ vecB = vec...

    Text Solution

    |

  10. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  11. Vectors perpendicular tohati-hatj-hatk and in the plane of hati+hatj+h...

    Text Solution

    |

  12. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  13. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  14. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  15. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  16. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  17. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  18. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  19. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  20. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |