Home
Class 11
MATHS
If veca and vecb are unequal unit vector...

If `veca and vecb` are unequal unit vectors such that `(veca - vecb) xx[ (vecb + veca) xx (2 veca + vecb)] = veca+vecb` then angle `theta " between " veca and vecb` is

A

0

B

`pi//2`

C

`pi//4`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the vector equation provided and find the angle \( \theta \) between the unit vectors \( \vec{a} \) and \( \vec{b} \). ### Step-by-Step Solution: 1. **Understand the Given Equation**: The equation given is: \[ (\vec{a} - \vec{b}) \times [(\vec{b} + \vec{a}) \times (2\vec{a} + \vec{b})] = \vec{a} + \vec{b} \] 2. **Use Vector Identity**: We can use the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Let \( \vec{x} = \vec{a} - \vec{b} \), \( \vec{y} = \vec{b} + \vec{a} \), and \( \vec{z} = 2\vec{a} + \vec{b} \). 3. **Calculate the Cross Product**: We need to calculate \( (\vec{b} + \vec{a}) \times (2\vec{a} + \vec{b}) \): \[ (\vec{b} + \vec{a}) \times (2\vec{a} + \vec{b}) = \vec{b} \times (2\vec{a} + \vec{b}) + \vec{a} \times (2\vec{a} + \vec{b}) \] This simplifies to: \[ 2(\vec{b} \times \vec{a}) + \vec{b} \times \vec{b} + 2(\vec{a} \times \vec{a}) + \vec{a} \times \vec{b} = 2(\vec{b} \times \vec{a}) + 0 + 0 + \vec{a} \times \vec{b} = 3(\vec{b} \times \vec{a}) \] 4. **Substituting Back**: Now substitute back into the original equation: \[ (\vec{a} - \vec{b}) \times [3(\vec{b} \times \vec{a})] = \vec{a} + \vec{b} \] This simplifies to: \[ 3(\vec{a} - \vec{b}) \times (\vec{b} \times \vec{a}) = \vec{a} + \vec{b} \] 5. **Using the Vector Identity Again**: Apply the vector triple product identity again: \[ (\vec{a} - \vec{b}) \times (\vec{b} \times \vec{a}) = (\vec{a} - \vec{b}) \cdot \vec{a} \vec{b} - (\vec{a} - \vec{b}) \cdot \vec{b} \vec{a} \] This leads to: \[ (\vec{a} - \vec{b}) \cdot \vec{b} = \vec{a} \cdot \vec{b} \] 6. **Dot Product**: Since \( \vec{a} \) and \( \vec{b} \) are unit vectors, we have: \[ |\vec{a}| = |\vec{b}| = 1 \quad \text{and} \quad \vec{a} \cdot \vec{b} = \cos \theta \] Therefore, we can write: \[ 1 - \cos \theta = \cos \theta \] Rearranging gives: \[ 1 = 2 \cos \theta \implies \cos \theta = \frac{1}{2} \] 7. **Finding the Angle**: The angle \( \theta \) corresponding to \( \cos \theta = \frac{1}{2} \) is: \[ \theta = \frac{\pi}{3} \quad \text{or} \quad \theta = \frac{5\pi}{3} \] However, since \( \vec{a} \) and \( \vec{b} \) are unequal unit vectors, we only consider \( \theta = \frac{\pi}{3} \). ### Final Answer: The angle \( \theta \) between \( \vec{a} \) and \( \vec{b} \) is \( \frac{\pi}{3} \).

To solve the given problem, we need to analyze the vector equation provided and find the angle \( \theta \) between the unit vectors \( \vec{a} \) and \( \vec{b} \). ### Step-by-Step Solution: 1. **Understand the Given Equation**: The equation given is: \[ (\vec{a} - \vec{b}) \times [(\vec{b} + \vec{a}) \times (2\vec{a} + \vec{b})] = \vec{a} + \vec{b} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If |veca xx vecb| = ab then the angle between veca and vecb is

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

If | veca + vecb|=| veca - vecb| , then what is the angle between veca and vecb ?

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

if veca and vecb are unit vectors such that veca. vecb = cos theta , then the value of | veca + vecb| , is

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

let veca, vecb and vecc be three unit vectors such that veca xx (vecb xx vecc) =sqrt(3)/2 (vecb + vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is:

If |veca+vecb|=|veca-vecb| , then what is the angle between veca " and "vecb ?

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. If vector vec b=(t a nalpha,-1,2sqrt(sinalpha//2))a n d vec c=(t a na...

    Text Solution

    |

  2. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  3. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  4. If veca and vecb are two unit vectors perpenicualar to each other and ...

    Text Solution

    |

  5. If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|v...

    Text Solution

    |

  6. If veca and vecb are non - zero vectors such that |veca + vecb| = |vec...

    Text Solution

    |

  7. Let veca vecb and vecc be non- zero vectors aned vecV(1) =veca xx (vec...

    Text Solution

    |

  8. Vectors vecA and vecB satisfying the vector equation vecA+ vecB = vec...

    Text Solution

    |

  9. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  10. Vectors perpendicular tohati-hatj-hatk and in the plane of hati+hatj+h...

    Text Solution

    |

  11. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  12. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  13. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  14. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  15. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  16. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  17. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  18. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  19. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  20. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |