Home
Class 11
MATHS
If veca and vecb are two unit vectors pe...

If `veca and vecb` are two unit vectors perpenicualar to each other and `vecc= lambda_(1)veca+ lambda_2 vecb+ lambda_(3)(vecaxx vecb),` then which of the following is (are) true ?

A

`lambda_(1)= veca.vecc`

B

`lambda_(2)= |vecb xx vecc|`

C

`lambda_(3)= |vecaxx vecb|xxvecc|`

D

`lambda_(1)veca + lambda_(2) vecb + lambda_(3) (vecaxxvecb)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vectors and their relationships. Let's break it down step by step. ### Step 1: Understand the Given Information We have two unit vectors, \(\vec{a}\) and \(\vec{b}\), which are perpendicular to each other. This means: - \(|\vec{a}| = 1\) - \(|\vec{b}| = 1\) - \(\vec{a} \cdot \vec{b} = 0\) We also have a vector \(\vec{c}\) defined as: \[ \vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b}) \] ### Step 2: Find \(\lambda_1\) To find \(\lambda_1\), we take the dot product of \(\vec{c}\) with \(\vec{a}\): \[ \lambda_1 = \vec{a} \cdot \vec{c} \] Substituting \(\vec{c}\): \[ \lambda_1 = \vec{a} \cdot (\lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})) \] Using the properties of dot products: \[ \lambda_1 = \lambda_1 (\vec{a} \cdot \vec{a}) + \lambda_2 (\vec{a} \cdot \vec{b}) + \lambda_3 (\vec{a} \cdot (\vec{a} \times \vec{b})) \] Since \(\vec{a} \cdot \vec{b} = 0\) and \(\vec{a} \cdot (\vec{a} \times \vec{b}) = 0\): \[ \lambda_1 = \lambda_1 \cdot 1 + 0 + 0 \Rightarrow \lambda_1 = \lambda_1 \] This equation is always true. ### Step 3: Find \(\lambda_2\) Next, we find \(\lambda_2\) by taking the dot product of \(\vec{c}\) with \(\vec{b}\): \[ \lambda_2 = \vec{b} \cdot \vec{c} \] Substituting \(\vec{c}\): \[ \lambda_2 = \vec{b} \cdot (\lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})) \] Using the properties of dot products: \[ \lambda_2 = \lambda_1 (\vec{b} \cdot \vec{a}) + \lambda_2 (\vec{b} \cdot \vec{b}) + \lambda_3 (\vec{b} \cdot (\vec{a} \times \vec{b})) \] Since \(\vec{b} \cdot \vec{a} = 0\) and \(\vec{b} \cdot (\vec{a} \times \vec{b}) = 0\): \[ \lambda_2 = 0 + \lambda_2 \cdot 1 + 0 \Rightarrow \lambda_2 = \lambda_2 \] This equation is also always true. ### Step 4: Find \(\lambda_3\) Now, we find \(\lambda_3\) by taking the dot product of \(\vec{c}\) with \((\vec{a} \times \vec{b})\): \[ \lambda_3 = (\vec{a} \times \vec{b}) \cdot \vec{c} \] Substituting \(\vec{c}\): \[ \lambda_3 = (\vec{a} \times \vec{b}) \cdot (\lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})) \] Using the properties of dot products: \[ \lambda_3 = \lambda_1 ((\vec{a} \times \vec{b}) \cdot \vec{a}) + \lambda_2 ((\vec{a} \times \vec{b}) \cdot \vec{b}) + \lambda_3 ((\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b})) \] Since \((\vec{a} \times \vec{b}) \cdot \vec{a} = 0\) and \((\vec{a} \times \vec{b}) \cdot \vec{b} = 0\): \[ \lambda_3 = 0 + 0 + \lambda_3 |\vec{a} \times \vec{b}|^2 \] The magnitude of \(\vec{a} \times \vec{b}\) is: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(90^\circ) = 1 \cdot 1 \cdot 1 = 1 \] Thus: \[ \lambda_3 = \lambda_3 \cdot 1 \Rightarrow \lambda_3 = \lambda_3 \] This equation is always true. ### Step 5: Conclusion From our analysis, we can conclude: - \(\lambda_1 = \vec{a} \cdot \vec{c}\) - \(\lambda_2 = \vec{b} \cdot \vec{c}\) - \(\lambda_3 = (\vec{a} \times \vec{b}) \cdot \vec{c}\) Thus, the correct options are: - Option A: \(\lambda_1 = \vec{a} \cdot \vec{c}\) - Option D: \(\lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b}) = \vec{c}\)

To solve the problem, we need to analyze the given vectors and their relationships. Let's break it down step by step. ### Step 1: Understand the Given Information We have two unit vectors, \(\vec{a}\) and \(\vec{b}\), which are perpendicular to each other. This means: - \(|\vec{a}| = 1\) - \(|\vec{b}| = 1\) - \(\vec{a} \cdot \vec{b} = 0\) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Comprehension type|27 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|11 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are two unit vectors perpendicular to each other and vecc=lamda_1veca+lamda_2vecb+lamda_3(vecaxxvecb) then the following is (are) true

veca and vecc are unit collinear vectors and |vecb|=6 , then vecb-3vecc = lambda veca , if lambda is:

If veca,vecb are vectors perpendicular to each other and |veca|=2, |vecb|=3, vecc xx veca=vecb , then the least value of 2|vecc-veca| is

If veca, vecb, vecc be three units vectors perpendicular to each other, then |(2veca+3vecb+4vecc).(veca xx vecb+5vecbxxvecc+6vecc xx veca)| is equal to

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

If alpha(veca xx vecb)+beta(vecb xx vecc)+lambda(vecc xx veca)=0 , then

If veca and vecb are non zero, non collinear vectors and veca_(1)=lambda veca+3 vecb, vecb_(1)=2veca+lambda vecb, vec c_(1)=veca+vecb . Find the sum of all possible real values of lambda so that points A_(1), B_(1), C_(1) whose position vectors are veca_(1), vecb_(1), vec c_(1) respectively are collinear is equal to.

If veca , vecb , vecc are non-coplanar vectors and lambda is a real number then [ lambda(veca+vecb) lambda^2vecb lambdavecc ] = [ veca vecb+vecc vecb ] for:

veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. Vecb =2 . If vecc = (2vecaxx vecb) - 3vecb then find angle between vecb and vecc .

veca and vecc are unit vectors and |vecb|=4 the angle between veca and vecb is cos ^(-1)(1//4) and vecb - 2vecc=lambdaveca the value of lambda is

CENGAGE ENGLISH-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercises MCQ
  1. Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |v...

    Text Solution

    |

  2. If veca and vecb are unequal unit vectors such that (veca - vecb) xx[ ...

    Text Solution

    |

  3. If veca and vecb are two unit vectors perpenicualar to each other and ...

    Text Solution

    |

  4. If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|v...

    Text Solution

    |

  5. If veca and vecb are non - zero vectors such that |veca + vecb| = |vec...

    Text Solution

    |

  6. Let veca vecb and vecc be non- zero vectors aned vecV(1) =veca xx (vec...

    Text Solution

    |

  7. Vectors vecA and vecB satisfying the vector equation vecA+ vecB = vec...

    Text Solution

    |

  8. A vector vecd is equally inclined to three vectors veca=hati-hatj+hatk...

    Text Solution

    |

  9. Vectors perpendicular tohati-hatj-hatk and in the plane of hati+hatj+h...

    Text Solution

    |

  10. If the sides vec(AB) of an equilateral triangle ABC lying in the xy-pl...

    Text Solution

    |

  11. Let hata be a unit vector and hatb a non zero vector non parallel to v...

    Text Solution

    |

  12. veca ,vecb and vecc are unimodular and coplanar. A unit vector vecd is...

    Text Solution

    |

  13. If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc...

    Text Solution

    |

  14. Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(vec...

    Text Solution

    |

  15. if veca xx vecb = vecc ,vecb xx vecc = veca , " where " vecc ne vec0 ...

    Text Solution

    |

  16. Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a ...

    Text Solution

    |

  17. If vec a , vec b , a n d harr c are three unit vecrtors such that ...

    Text Solution

    |

  18. If in triangle ABC, vec(AB) = vecu/|vecu|-vecv/|vecv| and vec(AC) = (...

    Text Solution

    |

  19. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to

    Text Solution

    |

  20. The scalars l and m such that lveca + m vecb =vecc, " where " veca, ve...

    Text Solution

    |